L(s) = 1 | + (77.0 + 719. i)2-s + (3.44e4 − 3.44e4i)3-s + (−5.12e5 + 1.10e5i)4-s + (−4.36e6 + 2.52e5i)5-s + (2.74e7 + 2.21e7i)6-s + (9.57e7 + 9.57e7i)7-s + (−1.19e8 − 3.60e8i)8-s − 1.20e9i·9-s + (−5.17e8 − 3.11e9i)10-s − 3.74e9i·11-s + (−1.38e10 + 2.14e10i)12-s + (−4.18e9 − 4.18e9i)13-s + (−6.15e10 + 7.62e10i)14-s + (−1.41e11 + 1.58e11i)15-s + (2.50e11 − 1.13e11i)16-s + (1.33e11 − 1.33e11i)17-s + ⋯ |
L(s) = 1 | + (0.106 + 0.994i)2-s + (1.00 − 1.00i)3-s + (−0.977 + 0.211i)4-s + (−0.998 + 0.0578i)5-s + (1.11 + 0.896i)6-s + (0.896 + 0.896i)7-s + (−0.314 − 0.949i)8-s − 1.03i·9-s + (−0.163 − 0.986i)10-s − 0.478i·11-s + (−0.772 + 1.19i)12-s + (−0.109 − 0.109i)13-s + (−0.796 + 0.986i)14-s + (−0.949 + 1.06i)15-s + (0.910 − 0.413i)16-s + (0.273 − 0.273i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 20 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.960 + 0.278i)\, \overline{\Lambda}(20-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20 ^{s/2} \, \Gamma_{\C}(s+19/2) \, L(s)\cr =\mathstrut & (0.960 + 0.278i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(10)\) |
\(\approx\) |
\(2.320545439\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.320545439\) |
\(L(\frac{21}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-77.0 - 719. i)T \) |
| 5 | \( 1 + (4.36e6 - 2.52e5i)T \) |
good | 3 | \( 1 + (-3.44e4 + 3.44e4i)T - 1.16e9iT^{2} \) |
| 7 | \( 1 + (-9.57e7 - 9.57e7i)T + 1.13e16iT^{2} \) |
| 11 | \( 1 + 3.74e9iT - 6.11e19T^{2} \) |
| 13 | \( 1 + (4.18e9 + 4.18e9i)T + 1.46e21iT^{2} \) |
| 17 | \( 1 + (-1.33e11 + 1.33e11i)T - 2.39e23iT^{2} \) |
| 19 | \( 1 + 2.29e11T + 1.97e24T^{2} \) |
| 23 | \( 1 + (6.38e12 - 6.38e12i)T - 7.46e25iT^{2} \) |
| 29 | \( 1 + 9.26e13iT - 6.10e27T^{2} \) |
| 31 | \( 1 + 1.84e14iT - 2.16e28T^{2} \) |
| 37 | \( 1 + (-7.69e14 + 7.69e14i)T - 6.24e29iT^{2} \) |
| 41 | \( 1 - 3.35e15T + 4.39e30T^{2} \) |
| 43 | \( 1 + (-4.55e15 + 4.55e15i)T - 1.08e31iT^{2} \) |
| 47 | \( 1 + (-2.45e15 - 2.45e15i)T + 5.88e31iT^{2} \) |
| 53 | \( 1 + (1.75e16 + 1.75e16i)T + 5.77e32iT^{2} \) |
| 59 | \( 1 - 1.27e17T + 4.42e33T^{2} \) |
| 61 | \( 1 + 2.11e16T + 8.34e33T^{2} \) |
| 67 | \( 1 + (1.04e17 + 1.04e17i)T + 4.95e34iT^{2} \) |
| 71 | \( 1 - 4.34e17iT - 1.49e35T^{2} \) |
| 73 | \( 1 + (5.76e17 + 5.76e17i)T + 2.53e35iT^{2} \) |
| 79 | \( 1 + 6.04e17T + 1.13e36T^{2} \) |
| 83 | \( 1 + (1.32e17 - 1.32e17i)T - 2.90e36iT^{2} \) |
| 89 | \( 1 - 1.33e18iT - 1.09e37T^{2} \) |
| 97 | \( 1 + (-6.21e18 + 6.21e18i)T - 5.60e37iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.13266251746798425791201945317, −12.85411038832162373936706883184, −11.66023079292174859083051890514, −9.063361700069365608840703575971, −8.020236715802457087439183224097, −7.52632829471097314735746030453, −5.78365527226295528687575308193, −4.03784286519260698646529824786, −2.44615387889664106732655102185, −0.64659255583768911407444522705,
1.13890292682385215837044935688, 2.84277377564929726467232733342, 4.09391810495449432119592164023, 4.60131909481511775411521540890, 7.78019915665876868599116361087, 8.795262116680210554583849731316, 10.17624671018917872046932808176, 11.09853336080922248267653328932, 12.53847084182976902411589977412, 14.26145945487742784545645472430