L(s) = 1 | + (0.415 + 0.909i)3-s + (−0.142 − 0.989i)4-s + (0.186 − 0.215i)7-s + (−0.654 + 0.755i)9-s + (0.841 − 0.540i)12-s + (−1.10 + 0.708i)13-s + (−0.959 + 0.281i)16-s + (−0.544 − 0.627i)19-s + (0.273 + 0.0801i)21-s + (0.841 − 0.540i)25-s + (−0.959 − 0.281i)27-s + (−0.239 − 0.153i)28-s + (−1.61 − 1.03i)31-s + (0.841 + 0.540i)36-s + 1.68·37-s + ⋯ |
L(s) = 1 | + (0.415 + 0.909i)3-s + (−0.142 − 0.989i)4-s + (0.186 − 0.215i)7-s + (−0.654 + 0.755i)9-s + (0.841 − 0.540i)12-s + (−1.10 + 0.708i)13-s + (−0.959 + 0.281i)16-s + (−0.544 − 0.627i)19-s + (0.273 + 0.0801i)21-s + (0.841 − 0.540i)25-s + (−0.959 − 0.281i)27-s + (−0.239 − 0.153i)28-s + (−1.61 − 1.03i)31-s + (0.841 + 0.540i)36-s + 1.68·37-s + ⋯ |
Λ(s)=(=(201s/2ΓC(s)L(s)(0.977−0.209i)Λ(1−s)
Λ(s)=(=(201s/2ΓC(s)L(s)(0.977−0.209i)Λ(1−s)
Degree: |
2 |
Conductor: |
201
= 3⋅67
|
Sign: |
0.977−0.209i
|
Analytic conductor: |
0.100312 |
Root analytic conductor: |
0.316720 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ201(62,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 201, ( :0), 0.977−0.209i)
|
Particular Values
L(21) |
≈ |
0.7346934610 |
L(21) |
≈ |
0.7346934610 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.415−0.909i)T |
| 67 | 1+(−0.841+0.540i)T |
good | 2 | 1+(0.142+0.989i)T2 |
| 5 | 1+(−0.841+0.540i)T2 |
| 7 | 1+(−0.186+0.215i)T+(−0.142−0.989i)T2 |
| 11 | 1+(−0.841+0.540i)T2 |
| 13 | 1+(1.10−0.708i)T+(0.415−0.909i)T2 |
| 17 | 1+(0.959+0.281i)T2 |
| 19 | 1+(0.544+0.627i)T+(−0.142+0.989i)T2 |
| 23 | 1+(0.654−0.755i)T2 |
| 29 | 1−T2 |
| 31 | 1+(1.61+1.03i)T+(0.415+0.909i)T2 |
| 37 | 1−1.68T+T2 |
| 41 | 1+(0.959+0.281i)T2 |
| 43 | 1+(0.239−1.66i)T+(−0.959−0.281i)T2 |
| 47 | 1+(0.654−0.755i)T2 |
| 53 | 1+(0.959−0.281i)T2 |
| 59 | 1+(−0.415−0.909i)T2 |
| 61 | 1+(0.797+0.234i)T+(0.841+0.540i)T2 |
| 71 | 1+(0.959−0.281i)T2 |
| 73 | 1+(−1.84−0.540i)T+(0.841+0.540i)T2 |
| 79 | 1+(−1.41+0.909i)T+(0.415−0.909i)T2 |
| 83 | 1+(−0.841+0.540i)T2 |
| 89 | 1+(0.654+0.755i)T2 |
| 97 | 1−0.830T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.87437398212227162990822184890, −11.34197574747998225003595613383, −10.73657278335023600728076315970, −9.618862533437738950827584256688, −9.188811016894397750878454323383, −7.79231444043136811084452426080, −6.38800713140840286698874402626, −5.04279795599805844043680312393, −4.29029707440931201342438965251, −2.38980598041041203657329163154,
2.35399982463227788155007059926, 3.58709128776213239155855266998, 5.27707622151570124240862432831, 6.82981130205455755479149753733, 7.65174021993838534597512107313, 8.461067397530067806453715320392, 9.397307942538483648845155435368, 10.90525113928465373630043900151, 12.12878107979351982848278764513, 12.57189597796151782298207190947