L(s) = 1 | + (0.415 + 0.909i)3-s + (−0.142 − 0.989i)4-s + (0.186 − 0.215i)7-s + (−0.654 + 0.755i)9-s + (0.841 − 0.540i)12-s + (−1.10 + 0.708i)13-s + (−0.959 + 0.281i)16-s + (−0.544 − 0.627i)19-s + (0.273 + 0.0801i)21-s + (0.841 − 0.540i)25-s + (−0.959 − 0.281i)27-s + (−0.239 − 0.153i)28-s + (−1.61 − 1.03i)31-s + (0.841 + 0.540i)36-s + 1.68·37-s + ⋯ |
L(s) = 1 | + (0.415 + 0.909i)3-s + (−0.142 − 0.989i)4-s + (0.186 − 0.215i)7-s + (−0.654 + 0.755i)9-s + (0.841 − 0.540i)12-s + (−1.10 + 0.708i)13-s + (−0.959 + 0.281i)16-s + (−0.544 − 0.627i)19-s + (0.273 + 0.0801i)21-s + (0.841 − 0.540i)25-s + (−0.959 − 0.281i)27-s + (−0.239 − 0.153i)28-s + (−1.61 − 1.03i)31-s + (0.841 + 0.540i)36-s + 1.68·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 201 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.977 - 0.209i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 201 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.977 - 0.209i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7346934610\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7346934610\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.415 - 0.909i)T \) |
| 67 | \( 1 + (-0.841 + 0.540i)T \) |
good | 2 | \( 1 + (0.142 + 0.989i)T^{2} \) |
| 5 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 7 | \( 1 + (-0.186 + 0.215i)T + (-0.142 - 0.989i)T^{2} \) |
| 11 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 13 | \( 1 + (1.10 - 0.708i)T + (0.415 - 0.909i)T^{2} \) |
| 17 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 19 | \( 1 + (0.544 + 0.627i)T + (-0.142 + 0.989i)T^{2} \) |
| 23 | \( 1 + (0.654 - 0.755i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (1.61 + 1.03i)T + (0.415 + 0.909i)T^{2} \) |
| 37 | \( 1 - 1.68T + T^{2} \) |
| 41 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 43 | \( 1 + (0.239 - 1.66i)T + (-0.959 - 0.281i)T^{2} \) |
| 47 | \( 1 + (0.654 - 0.755i)T^{2} \) |
| 53 | \( 1 + (0.959 - 0.281i)T^{2} \) |
| 59 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 61 | \( 1 + (0.797 + 0.234i)T + (0.841 + 0.540i)T^{2} \) |
| 71 | \( 1 + (0.959 - 0.281i)T^{2} \) |
| 73 | \( 1 + (-1.84 - 0.540i)T + (0.841 + 0.540i)T^{2} \) |
| 79 | \( 1 + (-1.41 + 0.909i)T + (0.415 - 0.909i)T^{2} \) |
| 83 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 89 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 97 | \( 1 - 0.830T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.87437398212227162990822184890, −11.34197574747998225003595613383, −10.73657278335023600728076315970, −9.618862533437738950827584256688, −9.188811016894397750878454323383, −7.79231444043136811084452426080, −6.38800713140840286698874402626, −5.04279795599805844043680312393, −4.29029707440931201342438965251, −2.38980598041041203657329163154,
2.35399982463227788155007059926, 3.58709128776213239155855266998, 5.27707622151570124240862432831, 6.82981130205455755479149753733, 7.65174021993838534597512107313, 8.461067397530067806453715320392, 9.397307942538483648845155435368, 10.90525113928465373630043900151, 12.12878107979351982848278764513, 12.57189597796151782298207190947