Properties

Label 201.1.k.a
Level 201201
Weight 11
Character orbit 201.k
Analytic conductor 0.1000.100
Analytic rank 00
Dimension 1010
Projective image D11D_{11}
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [201,1,Mod(14,201)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(201, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 8]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("201.14");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 201=367 201 = 3 \cdot 67
Weight: k k == 1 1
Character orbit: [χ][\chi] == 201.k (of order 2222, degree 1010, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.1003120675390.100312067539
Analytic rank: 00
Dimension: 1010
Coefficient field: Q(ζ22)\Q(\zeta_{22})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x10x9+x8x7+x6x5+x4x3+x2x+1 x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D11D_{11}
Projective field: Galois closure of Q[x]/(x11)\mathbb{Q}[x]/(x^{11} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ227q3+ζ226q4+(ζ229+ζ228)q7ζ223q9+ζ222q12+(ζ2210ζ225)q13ζ22q16++(ζ227+ζ224)q97+O(q100) q - \zeta_{22}^{7} q^{3} + \zeta_{22}^{6} q^{4} + ( - \zeta_{22}^{9} + \zeta_{22}^{8}) q^{7} - \zeta_{22}^{3} q^{9} + \zeta_{22}^{2} q^{12} + (\zeta_{22}^{10} - \zeta_{22}^{5}) q^{13} - \zeta_{22} q^{16} + \cdots + ( - \zeta_{22}^{7} + \zeta_{22}^{4}) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 10qq3q42q7q9q122q13q162q192q21q25q272q282q31q362q372q392q43q483q49+9q52+2q97+O(q100) 10 q - q^{3} - q^{4} - 2 q^{7} - q^{9} - q^{12} - 2 q^{13} - q^{16} - 2 q^{19} - 2 q^{21} - q^{25} - q^{27} - 2 q^{28} - 2 q^{31} - q^{36} - 2 q^{37} - 2 q^{39} - 2 q^{43} - q^{48} - 3 q^{49} + 9 q^{52}+ \cdots - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/201Z)×\left(\mathbb{Z}/201\mathbb{Z}\right)^\times.

nn 6868 136136
χ(n)\chi(n) 1-1 ζ226\zeta_{22}^{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
14.1
0.142315 + 0.989821i
−0.841254 0.540641i
0.959493 0.281733i
−0.415415 + 0.909632i
−0.841254 + 0.540641i
0.959493 + 0.281733i
−0.415415 0.909632i
0.654861 0.755750i
0.654861 + 0.755750i
0.142315 0.989821i
0 0.841254 + 0.540641i −0.654861 + 0.755750i 0 0 −0.544078 1.19136i 0 0.415415 + 0.909632i 0
59.1 0 −0.654861 0.755750i −0.959493 0.281733i 0 0 0.273100 1.89945i 0 −0.142315 + 0.989821i 0
62.1 0 0.415415 + 0.909632i −0.142315 0.989821i 0 0 0.186393 0.215109i 0 −0.654861 + 0.755750i 0
89.1 0 −0.142315 0.989821i 0.841254 0.540641i 0 0 −1.61435 + 0.474017i 0 −0.959493 + 0.281733i 0
92.1 0 −0.654861 + 0.755750i −0.959493 + 0.281733i 0 0 0.273100 + 1.89945i 0 −0.142315 0.989821i 0
107.1 0 0.415415 0.909632i −0.142315 + 0.989821i 0 0 0.186393 + 0.215109i 0 −0.654861 0.755750i 0
131.1 0 −0.142315 + 0.989821i 0.841254 + 0.540641i 0 0 −1.61435 0.474017i 0 −0.959493 0.281733i 0
143.1 0 −0.959493 0.281733i 0.415415 + 0.909632i 0 0 0.698939 + 0.449181i 0 0.841254 + 0.540641i 0
149.1 0 −0.959493 + 0.281733i 0.415415 0.909632i 0 0 0.698939 0.449181i 0 0.841254 0.540641i 0
158.1 0 0.841254 0.540641i −0.654861 0.755750i 0 0 −0.544078 + 1.19136i 0 0.415415 0.909632i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 14.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
67.e even 11 1 inner
201.k odd 22 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 201.1.k.a 10
3.b odd 2 1 CM 201.1.k.a 10
4.b odd 2 1 3216.1.cg.a 10
12.b even 2 1 3216.1.cg.a 10
67.e even 11 1 inner 201.1.k.a 10
201.k odd 22 1 inner 201.1.k.a 10
268.k odd 22 1 3216.1.cg.a 10
804.w even 22 1 3216.1.cg.a 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
201.1.k.a 10 1.a even 1 1 trivial
201.1.k.a 10 3.b odd 2 1 CM
201.1.k.a 10 67.e even 11 1 inner
201.1.k.a 10 201.k odd 22 1 inner
3216.1.cg.a 10 4.b odd 2 1
3216.1.cg.a 10 12.b even 2 1
3216.1.cg.a 10 268.k odd 22 1
3216.1.cg.a 10 804.w even 22 1

Hecke kernels

This newform subspace is the entire newspace S1new(201,[χ])S_{1}^{\mathrm{new}}(201, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T10 T^{10} Copy content Toggle raw display
33 T10+T9++1 T^{10} + T^{9} + \cdots + 1 Copy content Toggle raw display
55 T10 T^{10} Copy content Toggle raw display
77 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
1111 T10 T^{10} Copy content Toggle raw display
1313 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
1717 T10 T^{10} Copy content Toggle raw display
1919 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
2323 T10 T^{10} Copy content Toggle raw display
2929 T10 T^{10} Copy content Toggle raw display
3131 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
3737 (T5+T44T3++1)2 (T^{5} + T^{4} - 4 T^{3} + \cdots + 1)^{2} Copy content Toggle raw display
4141 T10 T^{10} Copy content Toggle raw display
4343 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
4747 T10 T^{10} Copy content Toggle raw display
5353 T10 T^{10} Copy content Toggle raw display
5959 T10 T^{10} Copy content Toggle raw display
6161 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
6767 T10+T9++1 T^{10} + T^{9} + \cdots + 1 Copy content Toggle raw display
7171 T10 T^{10} Copy content Toggle raw display
7373 T109T9++1 T^{10} - 9 T^{9} + \cdots + 1 Copy content Toggle raw display
7979 T109T9++1 T^{10} - 9 T^{9} + \cdots + 1 Copy content Toggle raw display
8383 T10 T^{10} Copy content Toggle raw display
8989 T10 T^{10} Copy content Toggle raw display
9797 (T5+T44T3++1)2 (T^{5} + T^{4} - 4 T^{3} + \cdots + 1)^{2} Copy content Toggle raw display
show more
show less