Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [201,1,Mod(14,201)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(201, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([11, 8]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("201.14");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 201.k (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14.1 |
|
0 | 0.841254 | + | 0.540641i | −0.654861 | + | 0.755750i | 0 | 0 | −0.544078 | − | 1.19136i | 0 | 0.415415 | + | 0.909632i | 0 | ||||||||||||||||||||||||||||||||||||||||
59.1 | 0 | −0.654861 | − | 0.755750i | −0.959493 | − | 0.281733i | 0 | 0 | 0.273100 | − | 1.89945i | 0 | −0.142315 | + | 0.989821i | 0 | |||||||||||||||||||||||||||||||||||||||||
62.1 | 0 | 0.415415 | + | 0.909632i | −0.142315 | − | 0.989821i | 0 | 0 | 0.186393 | − | 0.215109i | 0 | −0.654861 | + | 0.755750i | 0 | |||||||||||||||||||||||||||||||||||||||||
89.1 | 0 | −0.142315 | − | 0.989821i | 0.841254 | − | 0.540641i | 0 | 0 | −1.61435 | + | 0.474017i | 0 | −0.959493 | + | 0.281733i | 0 | |||||||||||||||||||||||||||||||||||||||||
92.1 | 0 | −0.654861 | + | 0.755750i | −0.959493 | + | 0.281733i | 0 | 0 | 0.273100 | + | 1.89945i | 0 | −0.142315 | − | 0.989821i | 0 | |||||||||||||||||||||||||||||||||||||||||
107.1 | 0 | 0.415415 | − | 0.909632i | −0.142315 | + | 0.989821i | 0 | 0 | 0.186393 | + | 0.215109i | 0 | −0.654861 | − | 0.755750i | 0 | |||||||||||||||||||||||||||||||||||||||||
131.1 | 0 | −0.142315 | + | 0.989821i | 0.841254 | + | 0.540641i | 0 | 0 | −1.61435 | − | 0.474017i | 0 | −0.959493 | − | 0.281733i | 0 | |||||||||||||||||||||||||||||||||||||||||
143.1 | 0 | −0.959493 | − | 0.281733i | 0.415415 | + | 0.909632i | 0 | 0 | 0.698939 | + | 0.449181i | 0 | 0.841254 | + | 0.540641i | 0 | |||||||||||||||||||||||||||||||||||||||||
149.1 | 0 | −0.959493 | + | 0.281733i | 0.415415 | − | 0.909632i | 0 | 0 | 0.698939 | − | 0.449181i | 0 | 0.841254 | − | 0.540641i | 0 | |||||||||||||||||||||||||||||||||||||||||
158.1 | 0 | 0.841254 | − | 0.540641i | −0.654861 | − | 0.755750i | 0 | 0 | −0.544078 | + | 1.19136i | 0 | 0.415415 | − | 0.909632i | 0 | |||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | CM by |
67.e | even | 11 | 1 | inner |
201.k | odd | 22 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 201.1.k.a | ✓ | 10 |
3.b | odd | 2 | 1 | CM | 201.1.k.a | ✓ | 10 |
4.b | odd | 2 | 1 | 3216.1.cg.a | 10 | ||
12.b | even | 2 | 1 | 3216.1.cg.a | 10 | ||
67.e | even | 11 | 1 | inner | 201.1.k.a | ✓ | 10 |
201.k | odd | 22 | 1 | inner | 201.1.k.a | ✓ | 10 |
268.k | odd | 22 | 1 | 3216.1.cg.a | 10 | ||
804.w | even | 22 | 1 | 3216.1.cg.a | 10 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
201.1.k.a | ✓ | 10 | 1.a | even | 1 | 1 | trivial |
201.1.k.a | ✓ | 10 | 3.b | odd | 2 | 1 | CM |
201.1.k.a | ✓ | 10 | 67.e | even | 11 | 1 | inner |
201.1.k.a | ✓ | 10 | 201.k | odd | 22 | 1 | inner |
3216.1.cg.a | 10 | 4.b | odd | 2 | 1 | ||
3216.1.cg.a | 10 | 12.b | even | 2 | 1 | ||
3216.1.cg.a | 10 | 268.k | odd | 22 | 1 | ||
3216.1.cg.a | 10 | 804.w | even | 22 | 1 |
Hecke kernels
This newform subspace is the entire newspace .