Properties

Label 2-2031-1.1-c1-0-10
Degree $2$
Conductor $2031$
Sign $1$
Analytic cond. $16.2176$
Root an. cond. $4.02711$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.00·2-s − 3-s − 0.989·4-s − 2.22·5-s + 1.00·6-s + 1.19·7-s + 3.00·8-s + 9-s + 2.23·10-s + 0.183·11-s + 0.989·12-s − 0.922·13-s − 1.20·14-s + 2.22·15-s − 1.04·16-s − 3.54·17-s − 1.00·18-s − 1.94·19-s + 2.20·20-s − 1.19·21-s − 0.184·22-s + 1.99·23-s − 3.00·24-s − 0.0487·25-s + 0.926·26-s − 27-s − 1.18·28-s + ⋯
L(s)  = 1  − 0.710·2-s − 0.577·3-s − 0.494·4-s − 0.995·5-s + 0.410·6-s + 0.452·7-s + 1.06·8-s + 0.333·9-s + 0.707·10-s + 0.0552·11-s + 0.285·12-s − 0.255·13-s − 0.321·14-s + 0.574·15-s − 0.260·16-s − 0.859·17-s − 0.236·18-s − 0.446·19-s + 0.492·20-s − 0.260·21-s − 0.0392·22-s + 0.416·23-s − 0.613·24-s − 0.00975·25-s + 0.181·26-s − 0.192·27-s − 0.223·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2031 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2031 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2031\)    =    \(3 \cdot 677\)
Sign: $1$
Analytic conductor: \(16.2176\)
Root analytic conductor: \(4.02711\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2031,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4590053655\)
\(L(\frac12)\) \(\approx\) \(0.4590053655\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
677 \( 1 - T \)
good2 \( 1 + 1.00T + 2T^{2} \)
5 \( 1 + 2.22T + 5T^{2} \)
7 \( 1 - 1.19T + 7T^{2} \)
11 \( 1 - 0.183T + 11T^{2} \)
13 \( 1 + 0.922T + 13T^{2} \)
17 \( 1 + 3.54T + 17T^{2} \)
19 \( 1 + 1.94T + 19T^{2} \)
23 \( 1 - 1.99T + 23T^{2} \)
29 \( 1 + 0.968T + 29T^{2} \)
31 \( 1 - 7.58T + 31T^{2} \)
37 \( 1 + 6.75T + 37T^{2} \)
41 \( 1 + 5.79T + 41T^{2} \)
43 \( 1 - 8.50T + 43T^{2} \)
47 \( 1 - 2.05T + 47T^{2} \)
53 \( 1 + 10.6T + 53T^{2} \)
59 \( 1 + 11.4T + 59T^{2} \)
61 \( 1 - 8.14T + 61T^{2} \)
67 \( 1 + 11.6T + 67T^{2} \)
71 \( 1 + 0.764T + 71T^{2} \)
73 \( 1 - 0.600T + 73T^{2} \)
79 \( 1 - 4.72T + 79T^{2} \)
83 \( 1 - 4.37T + 83T^{2} \)
89 \( 1 - 6.54T + 89T^{2} \)
97 \( 1 - 10.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.021951375823544971718239664954, −8.384206113761710695141073120138, −7.71335968204368327166656636202, −7.04121330297774901917748286707, −6.05632931733176937166822142468, −4.73974051881417445107807726918, −4.56854588711104774909513175097, −3.44005301390165919704142984086, −1.84116029761206790002332342583, −0.51987472121065890675482098755, 0.51987472121065890675482098755, 1.84116029761206790002332342583, 3.44005301390165919704142984086, 4.56854588711104774909513175097, 4.73974051881417445107807726918, 6.05632931733176937166822142468, 7.04121330297774901917748286707, 7.71335968204368327166656636202, 8.384206113761710695141073120138, 9.021951375823544971718239664954

Graph of the $Z$-function along the critical line