Properties

Label 2-20400-1.1-c1-0-0
Degree $2$
Conductor $20400$
Sign $1$
Analytic cond. $162.894$
Root an. cond. $12.7630$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·7-s + 9-s − 2·11-s − 4·13-s − 17-s + 4·19-s + 4·21-s − 8·23-s − 27-s + 8·29-s + 2·33-s + 2·37-s + 4·39-s − 4·41-s + 6·43-s − 12·47-s + 9·49-s + 51-s − 14·53-s − 4·57-s + 2·61-s − 4·63-s + 2·67-s + 8·69-s − 14·71-s − 2·73-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.51·7-s + 1/3·9-s − 0.603·11-s − 1.10·13-s − 0.242·17-s + 0.917·19-s + 0.872·21-s − 1.66·23-s − 0.192·27-s + 1.48·29-s + 0.348·33-s + 0.328·37-s + 0.640·39-s − 0.624·41-s + 0.914·43-s − 1.75·47-s + 9/7·49-s + 0.140·51-s − 1.92·53-s − 0.529·57-s + 0.256·61-s − 0.503·63-s + 0.244·67-s + 0.963·69-s − 1.66·71-s − 0.234·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(20400\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(162.894\)
Root analytic conductor: \(12.7630\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 20400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2247590175\)
\(L(\frac12)\) \(\approx\) \(0.2247590175\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
17 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 4 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + 14 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 + 14 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.74204111044190, −15.40121817556934, −14.35860461554662, −14.08966941878661, −13.32333537108345, −12.74723077228054, −12.50180380993533, −11.76012347883085, −11.44734186008884, −10.35433152129622, −10.12279999553137, −9.722503101562773, −9.112378762261052, −8.208574120059607, −7.642721122702005, −7.032792475571812, −6.356844325615584, −6.026421099815404, −5.192973525779386, −4.646266511578271, −3.857767917107552, −3.001942483920584, −2.581867221389900, −1.454822480901571, −0.1995120269963112, 0.1995120269963112, 1.454822480901571, 2.581867221389900, 3.001942483920584, 3.857767917107552, 4.646266511578271, 5.192973525779386, 6.026421099815404, 6.356844325615584, 7.032792475571812, 7.642721122702005, 8.208574120059607, 9.112378762261052, 9.722503101562773, 10.12279999553137, 10.35433152129622, 11.44734186008884, 11.76012347883085, 12.50180380993533, 12.74723077228054, 13.32333537108345, 14.08966941878661, 14.35860461554662, 15.40121817556934, 15.74204111044190

Graph of the $Z$-function along the critical line