L(s) = 1 | + (−0.809 − 0.587i)4-s + (−0.5 − 1.53i)5-s + (1.30 + 0.951i)7-s + (0.309 − 0.951i)9-s + (−0.809 + 0.587i)11-s + (0.309 + 0.951i)16-s + (0.190 + 0.587i)17-s + (−0.809 + 0.587i)19-s + (−0.5 + 1.53i)20-s + 0.618·23-s + (−1.30 + 0.951i)25-s + (−0.5 − 1.53i)28-s + (0.809 − 2.48i)35-s + (−0.809 + 0.587i)36-s + 0.618·43-s + 44-s + ⋯ |
L(s) = 1 | + (−0.809 − 0.587i)4-s + (−0.5 − 1.53i)5-s + (1.30 + 0.951i)7-s + (0.309 − 0.951i)9-s + (−0.809 + 0.587i)11-s + (0.309 + 0.951i)16-s + (0.190 + 0.587i)17-s + (−0.809 + 0.587i)19-s + (−0.5 + 1.53i)20-s + 0.618·23-s + (−1.30 + 0.951i)25-s + (−0.5 − 1.53i)28-s + (0.809 − 2.48i)35-s + (−0.809 + 0.587i)36-s + 0.618·43-s + 44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.624 + 0.781i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.624 + 0.781i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6196369510\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6196369510\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 + (0.809 - 0.587i)T \) |
| 19 | \( 1 + (0.809 - 0.587i)T \) |
good | 2 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 3 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 5 | \( 1 + (0.5 + 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 7 | \( 1 + (-1.30 - 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 13 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.190 - 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 - 0.618T + T^{2} \) |
| 29 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 41 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 - 0.618T + T^{2} \) |
| 47 | \( 1 + (0.5 - 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.190 - 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (1.61 + 1.17i)T + (0.309 + 0.951i)T^{2} \) |
| 79 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (0.5 + 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.55754108654927149206977030947, −11.77736733771123291824211224891, −10.44142081653990499334977380550, −9.234855821297590621975699829300, −8.631742236786995445683776810082, −7.87172071632455498761393167848, −5.84348882312015082626460189333, −4.94750417540238446597597982055, −4.23577991288248367378047185419, −1.52643915882307964783643299983,
2.76467273440989927742781032917, 4.12048781793688963050590855008, 5.11005384139615399801188318971, 7.08655780880078085318463662277, 7.69170128316693257239225794661, 8.441948033315951678875244942710, 10.14912427253826794641132597735, 10.92806231826180472754176426133, 11.40960441121386643588272252369, 12.97876538169174020162334207275