L(s) = 1 | + (−0.809 − 0.587i)4-s + (−0.5 − 1.53i)5-s + (1.30 + 0.951i)7-s + (0.309 − 0.951i)9-s + (−0.809 + 0.587i)11-s + (0.309 + 0.951i)16-s + (0.190 + 0.587i)17-s + (−0.809 + 0.587i)19-s + (−0.5 + 1.53i)20-s + 0.618·23-s + (−1.30 + 0.951i)25-s + (−0.5 − 1.53i)28-s + (0.809 − 2.48i)35-s + (−0.809 + 0.587i)36-s + 0.618·43-s + 44-s + ⋯ |
L(s) = 1 | + (−0.809 − 0.587i)4-s + (−0.5 − 1.53i)5-s + (1.30 + 0.951i)7-s + (0.309 − 0.951i)9-s + (−0.809 + 0.587i)11-s + (0.309 + 0.951i)16-s + (0.190 + 0.587i)17-s + (−0.809 + 0.587i)19-s + (−0.5 + 1.53i)20-s + 0.618·23-s + (−1.30 + 0.951i)25-s + (−0.5 − 1.53i)28-s + (0.809 − 2.48i)35-s + (−0.809 + 0.587i)36-s + 0.618·43-s + 44-s + ⋯ |
Λ(s)=(=(209s/2ΓC(s)L(s)(0.624+0.781i)Λ(1−s)
Λ(s)=(=(209s/2ΓC(s)L(s)(0.624+0.781i)Λ(1−s)
Degree: |
2 |
Conductor: |
209
= 11⋅19
|
Sign: |
0.624+0.781i
|
Analytic conductor: |
0.104304 |
Root analytic conductor: |
0.322962 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ209(75,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 209, ( :0), 0.624+0.781i)
|
Particular Values
L(21) |
≈ |
0.6196369510 |
L(21) |
≈ |
0.6196369510 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+(0.809−0.587i)T |
| 19 | 1+(0.809−0.587i)T |
good | 2 | 1+(0.809+0.587i)T2 |
| 3 | 1+(−0.309+0.951i)T2 |
| 5 | 1+(0.5+1.53i)T+(−0.809+0.587i)T2 |
| 7 | 1+(−1.30−0.951i)T+(0.309+0.951i)T2 |
| 13 | 1+(0.809+0.587i)T2 |
| 17 | 1+(−0.190−0.587i)T+(−0.809+0.587i)T2 |
| 23 | 1−0.618T+T2 |
| 29 | 1+(−0.309−0.951i)T2 |
| 31 | 1+(0.809+0.587i)T2 |
| 37 | 1+(−0.309−0.951i)T2 |
| 41 | 1+(−0.309+0.951i)T2 |
| 43 | 1−0.618T+T2 |
| 47 | 1+(0.5−0.363i)T+(0.309−0.951i)T2 |
| 53 | 1+(0.809+0.587i)T2 |
| 59 | 1+(−0.309−0.951i)T2 |
| 61 | 1+(−0.190−0.587i)T+(−0.809+0.587i)T2 |
| 67 | 1−T2 |
| 71 | 1+(0.809−0.587i)T2 |
| 73 | 1+(1.61+1.17i)T+(0.309+0.951i)T2 |
| 79 | 1+(0.809+0.587i)T2 |
| 83 | 1+(0.5+1.53i)T+(−0.809+0.587i)T2 |
| 89 | 1−T2 |
| 97 | 1+(0.809+0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.55754108654927149206977030947, −11.77736733771123291824211224891, −10.44142081653990499334977380550, −9.234855821297590621975699829300, −8.631742236786995445683776810082, −7.87172071632455498761393167848, −5.84348882312015082626460189333, −4.94750417540238446597597982055, −4.23577991288248367378047185419, −1.52643915882307964783643299983,
2.76467273440989927742781032917, 4.12048781793688963050590855008, 5.11005384139615399801188318971, 7.08655780880078085318463662277, 7.69170128316693257239225794661, 8.441948033315951678875244942710, 10.14912427253826794641132597735, 10.92806231826180472754176426133, 11.40960441121386643588272252369, 12.97876538169174020162334207275