Properties

Label 209.1.m.a.75.1
Level 209209
Weight 11
Character 209.75
Analytic conductor 0.1040.104
Analytic rank 00
Dimension 44
Projective image D5D_{5}
CM discriminant -19
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [209,1,Mod(37,209)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(209, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([2, 5]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("209.37");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 209=1119 209 = 11 \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 209.m (of order 1010, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.1043045876400.104304587640
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ10)\Q(\zeta_{10})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+x2x+1 x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D5D_{5}
Projective field: Galois closure of 5.1.5285401.1

Embedding invariants

Embedding label 75.1
Root 0.8090170.587785i0.809017 - 0.587785i of defining polynomial
Character χ\chi == 209.75
Dual form 209.1.m.a.170.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.8090170.587785i)q4+(0.5000001.53884i)q5+(1.30902+0.951057i)q7+(0.3090170.951057i)q9+(0.809017+0.587785i)q11+(0.309017+0.951057i)q16+(0.190983+0.587785i)q17+(0.809017+0.587785i)q19+(0.500000+1.53884i)q20+0.618034q23+(1.30902+0.951057i)q25+(0.5000001.53884i)q28+(0.8090172.48990i)q35+(0.809017+0.587785i)q36+0.618034q43+1.00000q441.61803q45+(0.500000+0.363271i)q47+(0.500000+1.53884i)q49+(1.30902+0.951057i)q55+(0.190983+0.587785i)q61+(1.309020.951057i)q63+(0.3090170.951057i)q64+(0.1909830.587785i)q68+(1.618031.17557i)q73+1.00000q761.61803q77+(1.309020.951057i)q80+(0.8090170.587785i)q81+(0.5000001.53884i)q83+(0.8090170.587785i)q85+(0.5000000.363271i)q92+(1.30902+0.951057i)q95+(0.309017+0.951057i)q99+O(q100)q+(-0.809017 - 0.587785i) q^{4} +(-0.500000 - 1.53884i) q^{5} +(1.30902 + 0.951057i) q^{7} +(0.309017 - 0.951057i) q^{9} +(-0.809017 + 0.587785i) q^{11} +(0.309017 + 0.951057i) q^{16} +(0.190983 + 0.587785i) q^{17} +(-0.809017 + 0.587785i) q^{19} +(-0.500000 + 1.53884i) q^{20} +0.618034 q^{23} +(-1.30902 + 0.951057i) q^{25} +(-0.500000 - 1.53884i) q^{28} +(0.809017 - 2.48990i) q^{35} +(-0.809017 + 0.587785i) q^{36} +0.618034 q^{43} +1.00000 q^{44} -1.61803 q^{45} +(-0.500000 + 0.363271i) q^{47} +(0.500000 + 1.53884i) q^{49} +(1.30902 + 0.951057i) q^{55} +(0.190983 + 0.587785i) q^{61} +(1.30902 - 0.951057i) q^{63} +(0.309017 - 0.951057i) q^{64} +(0.190983 - 0.587785i) q^{68} +(-1.61803 - 1.17557i) q^{73} +1.00000 q^{76} -1.61803 q^{77} +(1.30902 - 0.951057i) q^{80} +(-0.809017 - 0.587785i) q^{81} +(-0.500000 - 1.53884i) q^{83} +(0.809017 - 0.587785i) q^{85} +(-0.500000 - 0.363271i) q^{92} +(1.30902 + 0.951057i) q^{95} +(0.309017 + 0.951057i) q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4qq42q5+3q7q9q11q16+3q17q192q202q233q252q28+q35q362q43+4q442q452q47+2q49+q99+O(q100) 4 q - q^{4} - 2 q^{5} + 3 q^{7} - q^{9} - q^{11} - q^{16} + 3 q^{17} - q^{19} - 2 q^{20} - 2 q^{23} - 3 q^{25} - 2 q^{28} + q^{35} - q^{36} - 2 q^{43} + 4 q^{44} - 2 q^{45} - 2 q^{47} + 2 q^{49}+ \cdots - q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/209Z)×\left(\mathbb{Z}/209\mathbb{Z}\right)^\times.

nn 7878 134134
χ(n)\chi(n) 1-1 e(35)e\left(\frac{3}{5}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
33 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
44 −0.809017 0.587785i −0.809017 0.587785i
55 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
66 0 0
77 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 00
0.309017 + 0.951057i 0.400000π0.400000\pi
88 0 0
99 0.309017 0.951057i 0.309017 0.951057i
1010 0 0
1111 −0.809017 + 0.587785i −0.809017 + 0.587785i
1212 0 0
1313 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
1414 0 0
1515 0 0
1616 0.309017 + 0.951057i 0.309017 + 0.951057i
1717 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 00
−0.809017 + 0.587785i 0.800000π0.800000\pi
1818 0 0
1919 −0.809017 + 0.587785i −0.809017 + 0.587785i
2020 −0.500000 + 1.53884i −0.500000 + 1.53884i
2121 0 0
2222 0 0
2323 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
2424 0 0
2525 −1.30902 + 0.951057i −1.30902 + 0.951057i
2626 0 0
2727 0 0
2828 −0.500000 1.53884i −0.500000 1.53884i
2929 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
3030 0 0
3131 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
3232 0 0
3333 0 0
3434 0 0
3535 0.809017 2.48990i 0.809017 2.48990i
3636 −0.809017 + 0.587785i −0.809017 + 0.587785i
3737 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
4242 0 0
4343 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
4444 1.00000 1.00000
4545 −1.61803 −1.61803
4646 0 0
4747 −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
4848 0 0
4949 0.500000 + 1.53884i 0.500000 + 1.53884i
5050 0 0
5151 0 0
5252 0 0
5353 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
5454 0 0
5555 1.30902 + 0.951057i 1.30902 + 0.951057i
5656 0 0
5757 0 0
5858 0 0
5959 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
6060 0 0
6161 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 00
−0.809017 + 0.587785i 0.800000π0.800000\pi
6262 0 0
6363 1.30902 0.951057i 1.30902 0.951057i
6464 0.309017 0.951057i 0.309017 0.951057i
6565 0 0
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 0.190983 0.587785i 0.190983 0.587785i
6969 0 0
7070 0 0
7171 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
7272 0 0
7373 −1.61803 1.17557i −1.61803 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 0.587785i 0.800000π-0.800000\pi
7474 0 0
7575 0 0
7676 1.00000 1.00000
7777 −1.61803 −1.61803
7878 0 0
7979 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
8080 1.30902 0.951057i 1.30902 0.951057i
8181 −0.809017 0.587785i −0.809017 0.587785i
8282 0 0
8383 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
8484 0 0
8585 0.809017 0.587785i 0.809017 0.587785i
8686 0 0
8787 0 0
8888 0 0
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 0 0
9292 −0.500000 0.363271i −0.500000 0.363271i
9393 0 0
9494 0 0
9595 1.30902 + 0.951057i 1.30902 + 0.951057i
9696 0 0
9797 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
9898 0 0
9999 0.309017 + 0.951057i 0.309017 + 0.951057i
100100 1.61803 1.61803
101101 −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
102102 0 0
103103 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
108108 0 0
109109 0 0 1.00000 00
−1.00000 π\pi
110110 0 0
111111 0 0
112112 −0.500000 + 1.53884i −0.500000 + 1.53884i
113113 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
114114 0 0
115115 −0.309017 0.951057i −0.309017 0.951057i
116116 0 0
117117 0 0
118118 0 0
119119 −0.309017 + 0.951057i −0.309017 + 0.951057i
120120 0 0
121121 0.309017 0.951057i 0.309017 0.951057i
122122 0 0
123123 0 0
124124 0 0
125125 0.809017 + 0.587785i 0.809017 + 0.587785i
126126 0 0
127127 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
128128 0 0
129129 0 0
130130 0 0
131131 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
132132 0 0
133133 −1.61803 −1.61803
134134 0 0
135135 0 0
136136 0 0
137137 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
138138 0 0
139139 −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
140140 −2.11803 + 1.53884i −2.11803 + 1.53884i
141141 0 0
142142 0 0
143143 0 0
144144 1.00000 1.00000
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 0.618034 + 1.90211i 0.618034 + 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
150150 0 0
151151 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
152152 0 0
153153 0.618034 0.618034
154154 0 0
155155 0 0
156156 0 0
157157 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
1.00000 00
158158 0 0
159159 0 0
160160 0 0
161161 0.809017 + 0.587785i 0.809017 + 0.587785i
162162 0 0
163163 −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
168168 0 0
169169 −0.809017 0.587785i −0.809017 0.587785i
170170 0 0
171171 0.309017 + 0.951057i 0.309017 + 0.951057i
172172 −0.500000 0.363271i −0.500000 0.363271i
173173 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
174174 0 0
175175 −2.61803 −2.61803
176176 −0.809017 0.587785i −0.809017 0.587785i
177177 0 0
178178 0 0
179179 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
180180 1.30902 + 0.951057i 1.30902 + 0.951057i
181181 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 −0.500000 0.363271i −0.500000 0.363271i
188188 0.618034 0.618034
189189 0 0
190190 0 0
191191 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 00
0.309017 + 0.951057i 0.400000π0.400000\pi
192192 0 0
193193 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
194194 0 0
195195 0 0
196196 0.500000 1.53884i 0.500000 1.53884i
197197 2.00000 2.00000 1.00000 00
1.00000 00
198198 0 0
199199 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0.190983 0.587785i 0.190983 0.587785i
208208 0 0
209209 0.309017 0.951057i 0.309017 0.951057i
210210 0 0
211211 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
212212 0 0
213213 0 0
214214 0 0
215215 −0.309017 0.951057i −0.309017 0.951057i
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 −0.500000 1.53884i −0.500000 1.53884i
221221 0 0
222222 0 0
223223 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
224224 0 0
225225 0.500000 + 1.53884i 0.500000 + 1.53884i
226226 0 0
227227 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
228228 0 0
229229 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i 0.800000π-0.800000\pi
1.00000 00
230230 0 0
231231 0 0
232232 0 0
233233 −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
234234 0 0
235235 0.809017 + 0.587785i 0.809017 + 0.587785i
236236 0 0
237237 0 0
238238 0 0
239239 −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
240240 0 0
241241 0 0 1.00000 00
−1.00000 π\pi
242242 0 0
243243 0 0
244244 0.190983 0.587785i 0.190983 0.587785i
245245 2.11803 1.53884i 2.11803 1.53884i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i 0.800000π-0.800000\pi
1.00000 00
252252 −1.61803 −1.61803
253253 −0.500000 + 0.363271i −0.500000 + 0.363271i
254254 0 0
255255 0 0
256256 −0.809017 + 0.587785i −0.809017 + 0.587785i
257257 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 2.00000 2.00000 1.00000 00
1.00000 00
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
270270 0 0
271271 −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
272272 −0.500000 + 0.363271i −0.500000 + 0.363271i
273273 0 0
274274 0 0
275275 0.500000 1.53884i 0.500000 1.53884i
276276 0 0
277277 0.618034 1.90211i 0.618034 1.90211i 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
282282 0 0
283283 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
1.00000 00
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 0.500000 0.363271i 0.500000 0.363271i
290290 0 0
291291 0 0
292292 0.618034 + 1.90211i 0.618034 + 1.90211i
293293 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0.809017 + 0.587785i 0.809017 + 0.587785i
302302 0 0
303303 0 0
304304 −0.809017 0.587785i −0.809017 0.587785i
305305 0.809017 0.587785i 0.809017 0.587785i
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 1.30902 + 0.951057i 1.30902 + 0.951057i
309309 0 0
310310 0 0
311311 −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
312312 0 0
313313 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 00
−0.809017 + 0.587785i 0.800000π0.800000\pi
314314 0 0
315315 −2.11803 1.53884i −2.11803 1.53884i
316316 0 0
317317 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
318318 0 0
319319 0 0
320320 −1.61803 −1.61803
321321 0 0
322322 0 0
323323 −0.500000 0.363271i −0.500000 0.363271i
324324 0.309017 + 0.951057i 0.309017 + 0.951057i
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 −1.00000 −1.00000
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 −0.500000 + 1.53884i −0.500000 + 1.53884i
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
338338 0 0
339339 0 0
340340 −1.00000 −1.00000
341341 0 0
342342 0 0
343343 −0.309017 + 0.951057i −0.309017 + 0.951057i
344344 0 0
345345 0 0
346346 0 0
347347 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 00
−0.809017 + 0.587785i 0.800000π0.800000\pi
348348 0 0
349349 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
1.00000 00
350350 0 0
351351 0 0
352352 0 0
353353 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
360360 0 0
361361 0.309017 0.951057i 0.309017 0.951057i
362362 0 0
363363 0 0
364364 0 0
365365 −1.00000 + 3.07768i −1.00000 + 3.07768i
366366 0 0
367367 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 00
0.309017 + 0.951057i 0.400000π0.400000\pi
368368 0.190983 + 0.587785i 0.190983 + 0.587785i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 1.00000 00
−1.00000 π\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
380380 −0.500000 1.53884i −0.500000 1.53884i
381381 0 0
382382 0 0
383383 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
384384 0 0
385385 0.809017 + 2.48990i 0.809017 + 2.48990i
386386 0 0
387387 0.190983 0.587785i 0.190983 0.587785i
388388 0 0
389389 −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
390390 0 0
391391 0.118034 + 0.363271i 0.118034 + 0.363271i
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0.309017 0.951057i 0.309017 0.951057i
397397 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
398398 0 0
399399 0 0
400400 −1.30902 0.951057i −1.30902 0.951057i
401401 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
402402 0 0
403403 0 0
404404 1.30902 0.951057i 1.30902 0.951057i
405405 −0.500000 + 1.53884i −0.500000 + 1.53884i
406406 0 0
407407 0 0
408408 0 0
409409 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 −2.11803 + 1.53884i −2.11803 + 1.53884i
416416 0 0
417417 0 0
418418 0 0
419419 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
420420 0 0
421421 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
422422 0 0
423423 0.190983 + 0.587785i 0.190983 + 0.587785i
424424 0 0
425425 −0.809017 0.587785i −0.809017 0.587785i
426426 0 0
427427 −0.309017 + 0.951057i −0.309017 + 0.951057i
428428 0 0
429429 0 0
430430 0 0
431431 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
432432 0 0
433433 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
434434 0 0
435435 0 0
436436 0 0
437437 −0.500000 + 0.363271i −0.500000 + 0.363271i
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 1.61803 1.61803
442442 0 0
443443 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
1.00000 00
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 1.30902 0.951057i 1.30902 0.951057i
449449 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
458458 0 0
459459 0 0
460460 −0.309017 + 0.951057i −0.309017 + 0.951057i
461461 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
462462 0 0
463463 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
464464 0 0
465465 0 0
466466 0 0
467467 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 −0.500000 + 0.363271i −0.500000 + 0.363271i
474474 0 0
475475 0.500000 1.53884i 0.500000 1.53884i
476476 0.809017 0.587785i 0.809017 0.587785i
477477 0 0
478478 0 0
479479 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 00
−0.809017 + 0.587785i 0.800000π0.800000\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 −0.809017 + 0.587785i −0.809017 + 0.587785i
485485 0 0
486486 0 0
487487 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
488488 0 0
489489 0 0
490490 0 0
491491 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 00
0.309017 + 0.951057i 0.400000π0.400000\pi
492492 0 0
493493 0 0
494494 0 0
495495 1.30902 0.951057i 1.30902 0.951057i
496496 0 0
497497 0 0
498498 0 0
499499 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 00
0.309017 + 0.951057i 0.400000π0.400000\pi
500500 −0.309017 0.951057i −0.309017 0.951057i
501501 0 0
502502 0 0
503503 −1.61803 + 1.17557i −1.61803 + 1.17557i −0.809017 + 0.587785i 0.800000π0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
504504 0 0
505505 2.61803 2.61803
506506 0 0
507507 0 0
508508 0 0
509509 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
510510 0 0
511511 −1.00000 3.07768i −1.00000 3.07768i
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0.190983 0.587785i 0.190983 0.587785i
518518 0 0
519519 0 0
520520 0 0
521521 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
522522 0 0
523523 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
524524 1.30902 + 0.951057i 1.30902 + 0.951057i
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −0.618034 −0.618034
530530 0 0
531531 0 0
532532 1.30902 + 0.951057i 1.30902 + 0.951057i
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 −1.30902 0.951057i −1.30902 0.951057i
540540 0 0
541541 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i 0.800000π-0.800000\pi
1.00000 00
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
548548 −0.500000 + 1.53884i −0.500000 + 1.53884i
549549 0.618034 0.618034
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0.190983 + 0.587785i 0.190983 + 0.587785i
557557 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 00
0.309017 + 0.951057i 0.400000π0.400000\pi
558558 0 0
559559 0 0
560560 2.61803 2.61803
561561 0 0
562562 0 0
563563 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
564564 0 0
565565 0 0
566566 0 0
567567 −0.500000 1.53884i −0.500000 1.53884i
568568 0 0
569569 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
570570 0 0
571571 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
572572 0 0
573573 0 0
574574 0 0
575575 −0.809017 + 0.587785i −0.809017 + 0.587785i
576576 −0.809017 0.587785i −0.809017 0.587785i
577577 0.618034 + 1.90211i 0.618034 + 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
578578 0 0
579579 0 0
580580 0 0
581581 0.809017 2.48990i 0.809017 2.48990i
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 −1.61803 1.17557i −1.61803 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 0.587785i 0.800000π-0.800000\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
594594 0 0
595595 1.61803 1.61803
596596 0.618034 1.90211i 0.618034 1.90211i
597597 0 0
598598 0 0
599599 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
600600 0 0
601601 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
602602 0 0
603603 0 0
604604 0 0
605605 −1.61803 −1.61803
606606 0 0
607607 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 −0.500000 0.363271i −0.500000 0.363271i
613613 −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
614614 0 0
615615 0 0
616616 0 0
617617 2.00000 2.00000 1.00000 00
1.00000 00
618618 0 0
619619 −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0 0
626626 0 0
627627 0 0
628628 −1.61803 −1.61803
629629 0 0
630630 0 0
631631 −1.61803 1.17557i −1.61803 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 0.587785i 0.800000π-0.800000\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
642642 0 0
643643 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 00
−0.809017 + 0.587785i 0.800000π0.800000\pi
644644 −0.309017 0.951057i −0.309017 0.951057i
645645 0 0
646646 0 0
647647 0.618034 1.90211i 0.618034 1.90211i 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 1.30902 0.951057i 1.30902 0.951057i
653653 −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
654654 0 0
655655 0.809017 + 2.48990i 0.809017 + 2.48990i
656656 0 0
657657 −1.61803 + 1.17557i −1.61803 + 1.17557i
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 0 0
663663 0 0
664664 0 0
665665 0.809017 + 2.48990i 0.809017 + 2.48990i
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 −0.500000 0.363271i −0.500000 0.363271i
672672 0 0
673673 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
674674 0 0
675675 0 0
676676 0.309017 + 0.951057i 0.309017 + 0.951057i
677677 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000 00
−1.00000 π\pi
684684 0.309017 0.951057i 0.309017 0.951057i
685685 −2.11803 + 1.53884i −2.11803 + 1.53884i
686686 0 0
687687 0 0
688688 0.190983 + 0.587785i 0.190983 + 0.587785i
689689 0 0
690690 0 0
691691 −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
692692 0 0
693693 −0.500000 + 1.53884i −0.500000 + 1.53884i
694694 0 0
695695 −0.309017 + 0.951057i −0.309017 + 0.951057i
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 2.11803 + 1.53884i 2.11803 + 1.53884i
701701 −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
702702 0 0
703703 0 0
704704 0.309017 + 0.951057i 0.309017 + 0.951057i
705705 0 0
706706 0 0
707707 −2.11803 + 1.53884i −2.11803 + 1.53884i
708708 0 0
709709 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 00
0.309017 + 0.951057i 0.400000π0.400000\pi
720720 −0.500000 1.53884i −0.500000 1.53884i
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
728728 0 0
729729 −0.809017 + 0.587785i −0.809017 + 0.587785i
730730 0 0
731731 0.118034 + 0.363271i 0.118034 + 0.363271i
732732 0 0
733733 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 00
0.309017 + 0.951057i 0.400000π0.400000\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
744744 0 0
745745 2.61803 1.90211i 2.61803 1.90211i
746746 0 0
747747 −1.61803 −1.61803
748748 0.190983 + 0.587785i 0.190983 + 0.587785i
749749 0 0
750750 0 0
751751 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
752752 −0.500000 0.363271i −0.500000 0.363271i
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0.618034 1.90211i 0.618034 1.90211i 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
758758 0 0
759759 0 0
760760 0 0
761761 0.618034 1.90211i 0.618034 1.90211i 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
762762 0 0
763763 0 0
764764 −0.500000 1.53884i −0.500000 1.53884i
765765 −0.309017 0.951057i −0.309017 0.951057i
766766 0 0
767767 0 0
768768 0 0
769769 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 −1.30902 + 0.951057i −1.30902 + 0.951057i
785785 −2.11803 1.53884i −2.11803 1.53884i
786786 0 0
787787 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
788788 −1.61803 1.17557i −1.61803 1.17557i
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 1.30902 + 0.951057i 1.30902 + 0.951057i
797797 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
798798 0 0
799799 −0.309017 0.224514i −0.309017 0.224514i
800800 0 0
801801 0 0
802802 0 0
803803 2.00000 2.00000
804804 0 0
805805 0.500000 1.53884i 0.500000 1.53884i
806806 0 0
807807 0 0
808808 0 0
809809 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
810810 0 0
811811 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
812812 0 0
813813 0 0
814814 0 0
815815 2.61803 2.61803
816816 0 0
817817 −0.500000 + 0.363271i −0.500000 + 0.363271i
818818 0 0
819819 0 0
820820 0 0
821821 −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
822822 0 0
823823 −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
828828 −0.500000 + 0.363271i −0.500000 + 0.363271i
829829 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
830830 0 0
831831 0 0
832832 0 0
833833 −0.809017 + 0.587785i −0.809017 + 0.587785i
834834 0 0
835835 0 0
836836 −0.809017 + 0.587785i −0.809017 + 0.587785i
837837 0 0
838838 0 0
839839 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
840840 0 0
841841 0.309017 + 0.951057i 0.309017 + 0.951057i
842842 0 0
843843 0 0
844844 0 0
845845 −0.500000 + 1.53884i −0.500000 + 1.53884i
846846 0 0
847847 1.30902 0.951057i 1.30902 0.951057i
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 00
−0.809017 + 0.587785i 0.800000π0.800000\pi
854854 0 0
855855 1.30902 0.951057i 1.30902 0.951057i
856856 0 0
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
860860 −0.309017 + 0.951057i −0.309017 + 0.951057i
861861 0 0
862862 0 0
863863 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 0.500000 + 1.53884i 0.500000 + 1.53884i
876876 0 0
877877 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
878878 0 0
879879 0 0
880880 −0.500000 + 1.53884i −0.500000 + 1.53884i
881881 2.00000 2.00000 1.00000 00
1.00000 00
882882 0 0
883883 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
1.00000 00
884884 0 0
885885 0 0
886886 0 0
887887 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
888888 0 0
889889 0 0
890890 0 0
891891 1.00000 1.00000
892892 0 0
893893 0.190983 0.587785i 0.190983 0.587785i
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0.500000 1.53884i 0.500000 1.53884i
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
908908 0 0
909909 1.30902 + 0.951057i 1.30902 + 0.951057i
910910 0 0
911911 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
912912 0 0
913913 1.30902 + 0.951057i 1.30902 + 0.951057i
914914 0 0
915915 0 0
916916 −0.500000 + 0.363271i −0.500000 + 0.363271i
917917 −2.11803 1.53884i −2.11803 1.53884i
918918 0 0
919919 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 00
−0.809017 + 0.587785i 0.800000π0.800000\pi
930930 0 0
931931 −1.30902 0.951057i −1.30902 0.951057i
932932 1.30902 0.951057i 1.30902 0.951057i
933933 0 0
934934 0 0
935935 −0.309017 + 0.951057i −0.309017 + 0.951057i
936936 0 0
937937 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i 0.800000π-0.800000\pi
1.00000 00
938938 0 0
939939 0 0
940940 −0.309017 0.951057i −0.309017 0.951057i
941941 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
954954 0 0
955955 0.809017 2.48990i 0.809017 2.48990i
956956 0.618034 0.618034
957957 0 0
958958 0 0
959959 0.809017 2.48990i 0.809017 2.48990i
960960 0 0
961961 −0.809017 0.587785i −0.809017 0.587785i
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
972972 0 0
973973 −0.309017 0.951057i −0.309017 0.951057i
974974 0 0
975975 0 0
976976 −0.500000 + 0.363271i −0.500000 + 0.363271i
977977 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
978978 0 0
979979 0 0
980980 −2.61803 −2.61803
981981 0 0
982982 0 0
983983 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
984984 0 0
985985 −1.00000 3.07768i −1.00000 3.07768i
986986 0 0
987987 0 0
988988 0 0
989989 0.381966 0.381966
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0 0
995995 0.809017 + 2.48990i 0.809017 + 2.48990i
996996 0 0
997997 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 00
0.309017 + 0.951057i 0.400000π0.400000\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 209.1.m.a.75.1 4
3.2 odd 2 1881.1.bv.a.1747.1 4
4.3 odd 2 3344.1.bx.a.1329.1 4
11.2 odd 10 2299.1.m.c.1576.1 4
11.3 even 5 2299.1.m.b.1291.1 4
11.4 even 5 2299.1.b.a.1937.1 2
11.5 even 5 inner 209.1.m.a.170.1 yes 4
11.6 odd 10 2299.1.m.a.1842.1 4
11.7 odd 10 2299.1.b.b.1937.1 2
11.8 odd 10 2299.1.m.c.1291.1 4
11.9 even 5 2299.1.m.b.1576.1 4
11.10 odd 2 2299.1.m.a.493.1 4
19.2 odd 18 3971.1.bc.a.262.1 24
19.3 odd 18 3971.1.bc.a.3221.1 24
19.4 even 9 3971.1.bc.a.2473.1 24
19.5 even 9 3971.1.bc.a.1571.1 24
19.6 even 9 3971.1.bc.a.1560.1 24
19.7 even 3 3971.1.s.a.3903.1 8
19.8 odd 6 3971.1.s.a.2957.1 8
19.9 even 9 3971.1.bc.a.1021.1 24
19.10 odd 18 3971.1.bc.a.1021.1 24
19.11 even 3 3971.1.s.a.2957.1 8
19.12 odd 6 3971.1.s.a.3903.1 8
19.13 odd 18 3971.1.bc.a.1560.1 24
19.14 odd 18 3971.1.bc.a.1571.1 24
19.15 odd 18 3971.1.bc.a.2473.1 24
19.16 even 9 3971.1.bc.a.3221.1 24
19.17 even 9 3971.1.bc.a.262.1 24
19.18 odd 2 CM 209.1.m.a.75.1 4
33.5 odd 10 1881.1.bv.a.379.1 4
44.27 odd 10 3344.1.bx.a.1633.1 4
57.56 even 2 1881.1.bv.a.1747.1 4
76.75 even 2 3344.1.bx.a.1329.1 4
209.5 even 45 3971.1.bc.a.2293.1 24
209.16 even 45 3971.1.bc.a.3943.1 24
209.18 even 10 2299.1.b.b.1937.1 2
209.27 odd 30 3971.1.s.a.3679.1 8
209.37 odd 10 2299.1.b.a.1937.1 2
209.49 even 15 3971.1.s.a.3679.1 8
209.60 odd 90 3971.1.bc.a.3943.1 24
209.71 odd 90 3971.1.bc.a.2293.1 24
209.75 odd 10 2299.1.m.b.1576.1 4
209.82 even 45 3971.1.bc.a.2282.1 24
209.93 even 45 3971.1.bc.a.984.1 24
209.94 even 10 2299.1.m.a.1842.1 4
209.104 even 45 3971.1.bc.a.1743.1 24
209.113 odd 10 2299.1.m.b.1291.1 4
209.126 odd 30 3971.1.s.a.654.1 8
209.137 even 45 3971.1.bc.a.3195.1 24
209.148 odd 90 3971.1.bc.a.3195.1 24
209.151 even 10 2299.1.m.c.1291.1 4
209.159 even 15 3971.1.s.a.654.1 8
209.170 odd 10 inner 209.1.m.a.170.1 yes 4
209.181 odd 90 3971.1.bc.a.1743.1 24
209.189 even 10 2299.1.m.c.1576.1 4
209.192 odd 90 3971.1.bc.a.984.1 24
209.203 odd 90 3971.1.bc.a.2282.1 24
209.208 even 2 2299.1.m.a.493.1 4
627.170 even 10 1881.1.bv.a.379.1 4
836.379 even 10 3344.1.bx.a.1633.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
209.1.m.a.75.1 4 1.1 even 1 trivial
209.1.m.a.75.1 4 19.18 odd 2 CM
209.1.m.a.170.1 yes 4 11.5 even 5 inner
209.1.m.a.170.1 yes 4 209.170 odd 10 inner
1881.1.bv.a.379.1 4 33.5 odd 10
1881.1.bv.a.379.1 4 627.170 even 10
1881.1.bv.a.1747.1 4 3.2 odd 2
1881.1.bv.a.1747.1 4 57.56 even 2
2299.1.b.a.1937.1 2 11.4 even 5
2299.1.b.a.1937.1 2 209.37 odd 10
2299.1.b.b.1937.1 2 11.7 odd 10
2299.1.b.b.1937.1 2 209.18 even 10
2299.1.m.a.493.1 4 11.10 odd 2
2299.1.m.a.493.1 4 209.208 even 2
2299.1.m.a.1842.1 4 11.6 odd 10
2299.1.m.a.1842.1 4 209.94 even 10
2299.1.m.b.1291.1 4 11.3 even 5
2299.1.m.b.1291.1 4 209.113 odd 10
2299.1.m.b.1576.1 4 11.9 even 5
2299.1.m.b.1576.1 4 209.75 odd 10
2299.1.m.c.1291.1 4 11.8 odd 10
2299.1.m.c.1291.1 4 209.151 even 10
2299.1.m.c.1576.1 4 11.2 odd 10
2299.1.m.c.1576.1 4 209.189 even 10
3344.1.bx.a.1329.1 4 4.3 odd 2
3344.1.bx.a.1329.1 4 76.75 even 2
3344.1.bx.a.1633.1 4 44.27 odd 10
3344.1.bx.a.1633.1 4 836.379 even 10
3971.1.s.a.654.1 8 209.126 odd 30
3971.1.s.a.654.1 8 209.159 even 15
3971.1.s.a.2957.1 8 19.8 odd 6
3971.1.s.a.2957.1 8 19.11 even 3
3971.1.s.a.3679.1 8 209.27 odd 30
3971.1.s.a.3679.1 8 209.49 even 15
3971.1.s.a.3903.1 8 19.7 even 3
3971.1.s.a.3903.1 8 19.12 odd 6
3971.1.bc.a.262.1 24 19.2 odd 18
3971.1.bc.a.262.1 24 19.17 even 9
3971.1.bc.a.984.1 24 209.93 even 45
3971.1.bc.a.984.1 24 209.192 odd 90
3971.1.bc.a.1021.1 24 19.9 even 9
3971.1.bc.a.1021.1 24 19.10 odd 18
3971.1.bc.a.1560.1 24 19.6 even 9
3971.1.bc.a.1560.1 24 19.13 odd 18
3971.1.bc.a.1571.1 24 19.5 even 9
3971.1.bc.a.1571.1 24 19.14 odd 18
3971.1.bc.a.1743.1 24 209.104 even 45
3971.1.bc.a.1743.1 24 209.181 odd 90
3971.1.bc.a.2282.1 24 209.82 even 45
3971.1.bc.a.2282.1 24 209.203 odd 90
3971.1.bc.a.2293.1 24 209.5 even 45
3971.1.bc.a.2293.1 24 209.71 odd 90
3971.1.bc.a.2473.1 24 19.4 even 9
3971.1.bc.a.2473.1 24 19.15 odd 18
3971.1.bc.a.3195.1 24 209.137 even 45
3971.1.bc.a.3195.1 24 209.148 odd 90
3971.1.bc.a.3221.1 24 19.3 odd 18
3971.1.bc.a.3221.1 24 19.16 even 9
3971.1.bc.a.3943.1 24 209.16 even 45
3971.1.bc.a.3943.1 24 209.60 odd 90