Properties

Label 3971.1.bc.a.1560.1
Level $3971$
Weight $1$
Character 3971.1560
Analytic conductor $1.982$
Analytic rank $0$
Dimension $24$
Projective image $D_{5}$
CM discriminant -19
Inner twists $24$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3971,1,Mod(262,3971)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3971, base_ring=CyclotomicField(90))
 
chi = DirichletCharacter(H, H._module([54, 55]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3971.262");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3971 = 11 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3971.bc (of order \(90\), degree \(24\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.98178716517\)
Analytic rank: \(0\)
Dimension: \(24\)
Coefficient field: \(\Q(\zeta_{45})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} - x^{21} + x^{15} - x^{12} + x^{9} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 209)
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.5285401.1

Embedding invariants

Embedding label 1560.1
Root \(0.0348995 - 0.999391i\) of defining polynomial
Character \(\chi\) \(=\) 3971.1560
Dual form 3971.1.bc.a.3943.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.559193 + 0.829038i) q^{4} +(0.996161 + 1.27503i) q^{5} +(0.169131 - 1.60917i) q^{7} +(0.990268 + 0.139173i) q^{9} +(-0.104528 - 0.994522i) q^{11} +(-0.374607 + 0.927184i) q^{16} +(0.612019 - 0.0860137i) q^{17} +(-0.500000 + 1.53884i) q^{20} +(-0.580762 - 0.211380i) q^{23} +(-0.391438 + 1.56997i) q^{25} +(1.42864 - 0.759621i) q^{28} +(2.22022 - 1.38735i) q^{35} +(0.438371 + 0.898794i) q^{36} +(-0.580762 + 0.211380i) q^{43} +(0.766044 - 0.642788i) q^{44} +(0.809017 + 1.40126i) q^{45} +(-0.444576 - 0.429322i) q^{47} +(-1.58268 - 0.336408i) q^{49} +(1.16392 - 1.12398i) q^{55} +(0.0215691 - 0.617657i) q^{61} +(0.391438 - 1.56997i) q^{63} +(-0.978148 + 0.207912i) q^{64} +(0.413545 + 0.459289i) q^{68} +(-0.483844 - 1.94059i) q^{73} -1.61803 q^{77} +(-1.55535 + 0.445991i) q^{80} +(0.961262 + 0.275637i) q^{81} +(-1.08268 + 1.20243i) q^{83} +(0.719340 + 0.694658i) q^{85} +(-0.149516 - 0.599676i) q^{92} +(0.0348995 - 0.999391i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 9 q^{7} + 3 q^{11} - 12 q^{20} + 6 q^{45} - 6 q^{49} + 3 q^{64} - 9 q^{68} - 12 q^{77} + 6 q^{83}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3971\mathbb{Z}\right)^\times\).

\(n\) \(1806\) \(2168\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.882948 0.469472i \(-0.844444\pi\)
0.882948 + 0.469472i \(0.155556\pi\)
\(3\) 0 0 −0.997564 0.0697565i \(-0.977778\pi\)
0.997564 + 0.0697565i \(0.0222222\pi\)
\(4\) 0.559193 + 0.829038i 0.559193 + 0.829038i
\(5\) 0.996161 + 1.27503i 0.996161 + 1.27503i 0.961262 + 0.275637i \(0.0888889\pi\)
0.0348995 + 0.999391i \(0.488889\pi\)
\(6\) 0 0
\(7\) 0.169131 1.60917i 0.169131 1.60917i −0.500000 0.866025i \(-0.666667\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(8\) 0 0
\(9\) 0.990268 + 0.139173i 0.990268 + 0.139173i
\(10\) 0 0
\(11\) −0.104528 0.994522i −0.104528 0.994522i
\(12\) 0 0
\(13\) 0 0 −0.374607 0.927184i \(-0.622222\pi\)
0.374607 + 0.927184i \(0.377778\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.374607 + 0.927184i −0.374607 + 0.927184i
\(17\) 0.612019 0.0860137i 0.612019 0.0860137i 0.173648 0.984808i \(-0.444444\pi\)
0.438371 + 0.898794i \(0.355556\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(21\) 0 0
\(22\) 0 0
\(23\) −0.580762 0.211380i −0.580762 0.211380i 0.0348995 0.999391i \(-0.488889\pi\)
−0.615661 + 0.788011i \(0.711111\pi\)
\(24\) 0 0
\(25\) −0.391438 + 1.56997i −0.391438 + 1.56997i
\(26\) 0 0
\(27\) 0 0
\(28\) 1.42864 0.759621i 1.42864 0.759621i
\(29\) 0 0 0.438371 0.898794i \(-0.355556\pi\)
−0.438371 + 0.898794i \(0.644444\pi\)
\(30\) 0 0
\(31\) 0 0 0.978148 0.207912i \(-0.0666667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.22022 1.38735i 2.22022 1.38735i
\(36\) 0.438371 + 0.898794i 0.438371 + 0.898794i
\(37\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.997564 0.0697565i \(-0.977778\pi\)
0.997564 + 0.0697565i \(0.0222222\pi\)
\(42\) 0 0
\(43\) −0.580762 + 0.211380i −0.580762 + 0.211380i −0.615661 0.788011i \(-0.711111\pi\)
0.0348995 + 0.999391i \(0.488889\pi\)
\(44\) 0.766044 0.642788i 0.766044 0.642788i
\(45\) 0.809017 + 1.40126i 0.809017 + 1.40126i
\(46\) 0 0
\(47\) −0.444576 0.429322i −0.444576 0.429322i 0.438371 0.898794i \(-0.355556\pi\)
−0.882948 + 0.469472i \(0.844444\pi\)
\(48\) 0 0
\(49\) −1.58268 0.336408i −1.58268 0.336408i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.615661 0.788011i \(-0.288889\pi\)
−0.615661 + 0.788011i \(0.711111\pi\)
\(54\) 0 0
\(55\) 1.16392 1.12398i 1.16392 1.12398i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.719340 0.694658i \(-0.244444\pi\)
−0.719340 + 0.694658i \(0.755556\pi\)
\(60\) 0 0
\(61\) 0.0215691 0.617657i 0.0215691 0.617657i −0.939693 0.342020i \(-0.888889\pi\)
0.961262 0.275637i \(-0.0888889\pi\)
\(62\) 0 0
\(63\) 0.391438 1.56997i 0.391438 1.56997i
\(64\) −0.978148 + 0.207912i −0.978148 + 0.207912i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(68\) 0.413545 + 0.459289i 0.413545 + 0.459289i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.615661 0.788011i \(-0.711111\pi\)
0.615661 + 0.788011i \(0.288889\pi\)
\(72\) 0 0
\(73\) −0.483844 1.94059i −0.483844 1.94059i −0.241922 0.970296i \(-0.577778\pi\)
−0.241922 0.970296i \(-0.577778\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.61803 −1.61803
\(78\) 0 0
\(79\) 0 0 0.848048 0.529919i \(-0.177778\pi\)
−0.848048 + 0.529919i \(0.822222\pi\)
\(80\) −1.55535 + 0.445991i −1.55535 + 0.445991i
\(81\) 0.961262 + 0.275637i 0.961262 + 0.275637i
\(82\) 0 0
\(83\) −1.08268 + 1.20243i −1.08268 + 1.20243i −0.104528 + 0.994522i \(0.533333\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(84\) 0 0
\(85\) 0.719340 + 0.694658i 0.719340 + 0.694658i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.149516 0.599676i −0.149516 0.599676i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 −0.882948 0.469472i \(-0.844444\pi\)
0.882948 + 0.469472i \(0.155556\pi\)
\(98\) 0 0
\(99\) 0.0348995 0.999391i 0.0348995 0.999391i
\(100\) −1.52045 + 0.553400i −1.52045 + 0.553400i
\(101\) 0.606126 + 1.50021i 0.606126 + 1.50021i 0.848048 + 0.529919i \(0.177778\pi\)
−0.241922 + 0.970296i \(0.577778\pi\)
\(102\) 0 0
\(103\) 0 0 0.913545 0.406737i \(-0.133333\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.913545 0.406737i \(-0.866667\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(108\) 0 0
\(109\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.42864 + 0.759621i 1.42864 + 0.759621i
\(113\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(114\) 0 0
\(115\) −0.309017 0.951057i −0.309017 0.951057i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.0348995 0.999391i −0.0348995 0.999391i
\(120\) 0 0
\(121\) −0.978148 + 0.207912i −0.978148 + 0.207912i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.913545 + 0.406737i −0.913545 + 0.406737i
\(126\) 0 0
\(127\) 0 0 −0.848048 0.529919i \(-0.822222\pi\)
0.848048 + 0.529919i \(0.177778\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −0.280969 + 1.59345i −0.280969 + 1.59345i 0.438371 + 0.898794i \(0.355556\pi\)
−0.719340 + 0.694658i \(0.755556\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −0.0564686 + 1.61705i −0.0564686 + 1.61705i 0.559193 + 0.829038i \(0.311111\pi\)
−0.615661 + 0.788011i \(0.711111\pi\)
\(138\) 0 0
\(139\) −0.616528 + 0.0431119i −0.616528 + 0.0431119i −0.374607 0.927184i \(-0.622222\pi\)
−0.241922 + 0.970296i \(0.577778\pi\)
\(140\) 2.39169 + 1.06485i 2.39169 + 1.06485i
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.749213 + 1.85437i −0.749213 + 1.85437i −0.374607 + 0.927184i \(0.622222\pi\)
−0.374607 + 0.927184i \(0.622222\pi\)
\(150\) 0 0
\(151\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(152\) 0 0
\(153\) 0.618034 0.618034
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.904793 + 1.34141i −0.904793 + 1.34141i 0.0348995 + 0.999391i \(0.488889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −0.438371 + 0.898794i −0.438371 + 0.898794i
\(162\) 0 0
\(163\) −1.08268 1.20243i −1.08268 1.20243i −0.978148 0.207912i \(-0.933333\pi\)
−0.104528 0.994522i \(-0.533333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.615661 0.788011i \(-0.288889\pi\)
−0.615661 + 0.788011i \(0.711111\pi\)
\(168\) 0 0
\(169\) −0.719340 + 0.694658i −0.719340 + 0.694658i
\(170\) 0 0
\(171\) 0 0
\(172\) −0.500000 0.363271i −0.500000 0.363271i
\(173\) 0 0 −0.438371 0.898794i \(-0.644444\pi\)
0.438371 + 0.898794i \(0.355556\pi\)
\(174\) 0 0
\(175\) 2.46015 + 0.895420i 2.46015 + 0.895420i
\(176\) 0.961262 + 0.275637i 0.961262 + 0.275637i
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.104528 0.994522i \(-0.533333\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(180\) −0.709299 + 1.45428i −0.709299 + 1.45428i
\(181\) 0 0 0.882948 0.469472i \(-0.155556\pi\)
−0.882948 + 0.469472i \(0.844444\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.149516 0.599676i −0.149516 0.599676i
\(188\) 0.107320 0.608645i 0.107320 0.608645i
\(189\) 0 0
\(190\) 0 0
\(191\) 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 \(0\)
0.309017 + 0.951057i \(0.400000\pi\)
\(192\) 0 0
\(193\) 0 0 0.374607 0.927184i \(-0.377778\pi\)
−0.374607 + 0.927184i \(0.622222\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.606126 1.50021i −0.606126 1.50021i
\(197\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(198\) 0 0
\(199\) −0.280969 1.59345i −0.280969 1.59345i −0.719340 0.694658i \(-0.755556\pi\)
0.438371 0.898794i \(-0.355556\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −0.545692 0.290149i −0.545692 0.290149i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.882948 0.469472i \(-0.844444\pi\)
0.882948 + 0.469472i \(0.155556\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.848048 0.529919i −0.848048 0.529919i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 1.58268 + 0.336408i 1.58268 + 0.336408i
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.559193 0.829038i \(-0.311111\pi\)
−0.559193 + 0.829038i \(0.688889\pi\)
\(224\) 0 0
\(225\) −0.606126 + 1.50021i −0.606126 + 1.50021i
\(226\) 0 0
\(227\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(228\) 0 0
\(229\) 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
1.00000 \(0\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.0564686 1.61705i −0.0564686 1.61705i −0.615661 0.788011i \(-0.711111\pi\)
0.559193 0.829038i \(-0.311111\pi\)
\(234\) 0 0
\(235\) 0.104528 0.994522i 0.104528 0.994522i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −0.0646021 0.614648i −0.0646021 0.614648i −0.978148 0.207912i \(-0.933333\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(240\) 0 0
\(241\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0.524123 0.327508i 0.524123 0.327508i
\(245\) −1.14767 2.35307i −1.14767 2.35307i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −0.380500 + 0.487017i −0.380500 + 0.487017i −0.939693 0.342020i \(-0.888889\pi\)
0.559193 + 0.829038i \(0.311111\pi\)
\(252\) 1.52045 0.553400i 1.52045 0.553400i
\(253\) −0.149516 + 0.599676i −0.149516 + 0.599676i
\(254\) 0 0
\(255\) 0 0
\(256\) −0.719340 0.694658i −0.719340 0.694658i
\(257\) 0 0 0.438371 0.898794i \(-0.355556\pi\)
−0.438371 + 0.898794i \(0.644444\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.53209 + 1.28558i 1.53209 + 1.28558i 0.766044 + 0.642788i \(0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.374607 0.927184i \(-0.377778\pi\)
−0.374607 + 0.927184i \(0.622222\pi\)
\(270\) 0 0
\(271\) 0.594092 + 0.170353i 0.594092 + 0.170353i 0.559193 0.829038i \(-0.311111\pi\)
0.0348995 + 0.999391i \(0.488889\pi\)
\(272\) −0.149516 + 0.599676i −0.149516 + 0.599676i
\(273\) 0 0
\(274\) 0 0
\(275\) 1.60229 + 0.225187i 1.60229 + 0.225187i
\(276\) 0 0
\(277\) 1.33826 + 1.48629i 1.33826 + 1.48629i 0.669131 + 0.743145i \(0.266667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 0.0348995 0.999391i \(-0.488889\pi\)
−0.0348995 + 0.999391i \(0.511111\pi\)
\(282\) 0 0
\(283\) −0.709299 1.45428i −0.709299 1.45428i −0.882948 0.469472i \(-0.844444\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −0.594092 + 0.170353i −0.594092 + 0.170353i
\(290\) 0 0
\(291\) 0 0
\(292\) 1.33826 1.48629i 1.33826 1.48629i
\(293\) 0 0 0.913545 0.406737i \(-0.133333\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0.241922 + 0.970296i 0.241922 + 0.970296i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.809017 0.587785i 0.809017 0.587785i
\(306\) 0 0
\(307\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(308\) −0.904793 1.34141i −0.904793 1.34141i
\(309\) 0 0
\(310\) 0 0
\(311\) 0.564602 + 0.251377i 0.564602 + 0.251377i 0.669131 0.743145i \(-0.266667\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(312\) 0 0
\(313\) −0.545692 + 0.290149i −0.545692 + 0.290149i −0.719340 0.694658i \(-0.755556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(314\) 0 0
\(315\) 2.39169 1.06485i 2.39169 1.06485i
\(316\) 0 0
\(317\) 0 0 −0.374607 0.927184i \(-0.622222\pi\)
0.374607 + 0.927184i \(0.377778\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −1.23949 1.04005i −1.23949 1.04005i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(330\) 0 0
\(331\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(332\) −1.60229 0.225187i −1.60229 0.225187i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.961262 0.275637i \(-0.911111\pi\)
0.961262 + 0.275637i \(0.0888889\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(341\) 0 0
\(342\) 0 0
\(343\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −0.380500 0.487017i −0.380500 0.487017i 0.559193 0.829038i \(-0.311111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(348\) 0 0
\(349\) −1.47815 0.658114i −1.47815 0.658114i −0.500000 0.866025i \(-0.666667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.809017 1.40126i 0.809017 1.40126i −0.104528 0.994522i \(-0.533333\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −0.444576 + 0.429322i −0.444576 + 0.429322i −0.882948 0.469472i \(-0.844444\pi\)
0.438371 + 0.898794i \(0.355556\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.99232 2.55006i 1.99232 2.55006i
\(366\) 0 0
\(367\) 1.61409 0.112868i 1.61409 0.112868i 0.766044 0.642788i \(-0.222222\pi\)
0.848048 + 0.529919i \(0.177778\pi\)
\(368\) 0.413545 0.459289i 0.413545 0.459289i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.848048 0.529919i \(-0.177778\pi\)
−0.848048 + 0.529919i \(0.822222\pi\)
\(384\) 0 0
\(385\) −1.61182 2.06304i −1.61182 2.06304i
\(386\) 0 0
\(387\) −0.604528 + 0.128496i −0.604528 + 0.128496i
\(388\) 0 0
\(389\) 0.270928 0.555485i 0.270928 0.555485i −0.719340 0.694658i \(-0.755556\pi\)
0.990268 + 0.139173i \(0.0444444\pi\)
\(390\) 0 0
\(391\) −0.373619 0.0794152i −0.373619 0.0794152i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0.848048 0.529919i 0.848048 0.529919i
\(397\) 0.107320 0.608645i 0.107320 0.608645i −0.882948 0.469472i \(-0.844444\pi\)
0.990268 0.139173i \(-0.0444444\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.30902 0.951057i −1.30902 0.951057i
\(401\) 0 0 0.990268 0.139173i \(-0.0444444\pi\)
−0.990268 + 0.139173i \(0.955556\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −0.904793 + 1.34141i −0.904793 + 1.34141i
\(405\) 0.606126 + 1.50021i 0.606126 + 1.50021i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.990268 0.139173i \(-0.955556\pi\)
0.990268 + 0.139173i \(0.0444444\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2.61166 0.182625i −2.61166 0.182625i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(420\) 0 0
\(421\) 0 0 −0.997564 0.0697565i \(-0.977778\pi\)
0.997564 + 0.0697565i \(0.0222222\pi\)
\(422\) 0 0
\(423\) −0.380500 0.487017i −0.380500 0.487017i
\(424\) 0 0
\(425\) −0.104528 + 0.994522i −0.104528 + 0.994522i
\(426\) 0 0
\(427\) −0.990268 0.139173i −0.990268 0.139173i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.374607 0.927184i \(-0.622222\pi\)
0.374607 + 0.927184i \(0.377778\pi\)
\(432\) 0 0
\(433\) 0 0 −0.559193 0.829038i \(-0.688889\pi\)
0.559193 + 0.829038i \(0.311111\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(440\) 0 0
\(441\) −1.52045 0.553400i −1.52045 0.553400i
\(442\) 0 0
\(443\) 0.391438 1.56997i 0.391438 1.56997i −0.374607 0.927184i \(-0.622222\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0.169131 + 1.60917i 0.169131 + 1.60917i
\(449\) 0 0 0.978148 0.207912i \(-0.0666667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0.615661 0.788011i 0.615661 0.788011i
\(461\) 1.52045 0.553400i 1.52045 0.553400i 0.559193 0.829038i \(-0.311111\pi\)
0.961262 + 0.275637i \(0.0888889\pi\)
\(462\) 0 0
\(463\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.58268 + 0.336408i 1.58268 + 0.336408i 0.913545 0.406737i \(-0.133333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.270928 + 0.555485i 0.270928 + 0.555485i
\(474\) 0 0
\(475\) 0 0
\(476\) 0.809017 0.587785i 0.809017 0.587785i
\(477\) 0 0
\(478\) 0 0
\(479\) 0.0215691 0.617657i 0.0215691 0.617657i −0.939693 0.342020i \(-0.888889\pi\)
0.961262 0.275637i \(-0.0888889\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −0.719340 0.694658i −0.719340 0.694658i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 −0.913545 0.406737i \(-0.866667\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0.391438 + 1.56997i 0.391438 + 1.56997i 0.766044 + 0.642788i \(0.222222\pi\)
−0.374607 + 0.927184i \(0.622222\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 1.30902 0.951057i 1.30902 0.951057i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1.55535 0.445991i −1.55535 0.445991i −0.615661 0.788011i \(-0.711111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(500\) −0.848048 0.529919i −0.848048 0.529919i
\(501\) 0 0
\(502\) 0 0
\(503\) −1.43868 1.38932i −1.43868 1.38932i −0.719340 0.694658i \(-0.755556\pi\)
−0.719340 0.694658i \(-0.755556\pi\)
\(504\) 0 0
\(505\) −1.30902 + 2.26728i −1.30902 + 2.26728i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 0.961262 0.275637i \(-0.0888889\pi\)
−0.961262 + 0.275637i \(0.911111\pi\)
\(510\) 0 0
\(511\) −3.20457 + 0.450374i −3.20457 + 0.450374i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −0.380500 + 0.487017i −0.380500 + 0.487017i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.913545 0.406737i \(-0.133333\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(522\) 0 0
\(523\) 0 0 0.882948 0.469472i \(-0.155556\pi\)
−0.882948 + 0.469472i \(0.844444\pi\)
\(524\) −1.47815 + 0.658114i −1.47815 + 0.658114i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.473442 0.397265i −0.473442 0.397265i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.169131 + 1.60917i −0.169131 + 1.60917i
\(540\) 0 0
\(541\) 0.612019 + 0.0860137i 0.612019 + 0.0860137i 0.438371 0.898794i \(-0.355556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.961262 0.275637i \(-0.0888889\pi\)
−0.961262 + 0.275637i \(0.911111\pi\)
\(548\) −1.37217 + 0.857427i −1.37217 + 0.857427i
\(549\) 0.107320 0.608645i 0.107320 0.608645i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −0.380500 0.487017i −0.380500 0.487017i
\(557\) 1.61409 0.112868i 1.61409 0.112868i 0.766044 0.642788i \(-0.222222\pi\)
0.848048 + 0.529919i \(0.177778\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0.454617 + 2.57826i 0.454617 + 2.57826i
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.978148 0.207912i \(-0.0666667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.606126 1.50021i 0.606126 1.50021i
\(568\) 0 0
\(569\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(570\) 0 0
\(571\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.559193 0.829038i 0.559193 0.829038i
\(576\) −0.997564 + 0.0697565i −0.997564 + 0.0697565i
\(577\) 1.33826 1.48629i 1.33826 1.48629i 0.669131 0.743145i \(-0.266667\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.75181 + 1.94558i 1.75181 + 1.94558i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.43868 + 1.38932i −1.43868 + 1.38932i −0.719340 + 0.694658i \(0.755556\pi\)
−0.719340 + 0.694658i \(0.755556\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −0.580762 0.211380i −0.580762 0.211380i 0.0348995 0.999391i \(-0.488889\pi\)
−0.615661 + 0.788011i \(0.711111\pi\)
\(594\) 0 0
\(595\) 1.23949 1.04005i 1.23949 1.04005i
\(596\) −1.95630 + 0.415823i −1.95630 + 0.415823i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.882948 0.469472i \(-0.155556\pi\)
−0.882948 + 0.469472i \(0.844444\pi\)
\(600\) 0 0
\(601\) 0 0 0.104528 0.994522i \(-0.466667\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.23949 1.04005i −1.23949 1.04005i
\(606\) 0 0
\(607\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0.345600 + 0.512373i 0.345600 + 0.512373i
\(613\) 0.345600 0.512373i 0.345600 0.512373i −0.615661 0.788011i \(-0.711111\pi\)
0.961262 + 0.275637i \(0.0888889\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.347296 + 1.96962i 0.347296 + 1.96962i 0.173648 + 0.984808i \(0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(618\) 0 0
\(619\) −0.0646021 0.614648i −0.0646021 0.614648i −0.978148 0.207912i \(-0.933333\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) −1.61803 −1.61803
\(629\) 0 0
\(630\) 0 0
\(631\) 1.11839 + 1.65808i 1.11839 + 1.65808i 0.559193 + 0.829038i \(0.311111\pi\)
0.559193 + 0.829038i \(0.311111\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 0.559193 0.829038i \(-0.311111\pi\)
−0.559193 + 0.829038i \(0.688889\pi\)
\(642\) 0 0
\(643\) −0.231520 + 0.573031i −0.231520 + 0.573031i −0.997564 0.0697565i \(-0.977778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(644\) −0.990268 + 0.139173i −0.990268 + 0.139173i
\(645\) 0 0
\(646\) 0 0
\(647\) 0.618034 1.90211i 0.618034 1.90211i 0.309017 0.951057i \(-0.400000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0.391438 1.56997i 0.391438 1.56997i
\(653\) −0.0646021 + 0.614648i −0.0646021 + 0.614648i 0.913545 + 0.406737i \(0.133333\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(654\) 0 0
\(655\) −2.31159 + 1.22909i −2.31159 + 1.22909i
\(656\) 0 0
\(657\) −0.209057 1.98904i −0.209057 1.98904i
\(658\) 0 0
\(659\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(660\) 0 0
\(661\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −0.616528 + 0.0431119i −0.616528 + 0.0431119i
\(672\) 0 0
\(673\) 0 0 −0.669131 0.743145i \(-0.733333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −0.978148 0.207912i −0.978148 0.207912i
\(677\) 0 0 0.669131 0.743145i \(-0.266667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) −2.11803 + 1.53884i −2.11803 + 1.53884i
\(686\) 0 0
\(687\) 0 0
\(688\) 0.0215691 0.617657i 0.0215691 0.617657i
\(689\) 0 0
\(690\) 0 0
\(691\) 1.58268 0.336408i 1.58268 0.336408i 0.669131 0.743145i \(-0.266667\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(692\) 0 0
\(693\) −1.60229 0.225187i −1.60229 0.225187i
\(694\) 0 0
\(695\) −0.669131 0.743145i −0.669131 0.743145i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0.633360 + 2.54027i 0.633360 + 2.54027i
\(701\) 0.270928 + 0.555485i 0.270928 + 0.555485i 0.990268 0.139173i \(-0.0444444\pi\)
−0.719340 + 0.694658i \(0.755556\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(705\) 0 0
\(706\) 0 0
\(707\) 2.51662 0.721628i 2.51662 0.721628i
\(708\) 0 0
\(709\) −1.37217 0.857427i −1.37217 0.857427i −0.374607 0.927184i \(-0.622222\pi\)
−0.997564 + 0.0697565i \(0.977778\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0.391438 + 1.56997i 0.391438 + 1.56997i 0.766044 + 0.642788i \(0.222222\pi\)
−0.374607 + 0.927184i \(0.622222\pi\)
\(720\) −1.60229 + 0.225187i −1.60229 + 0.225187i
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −0.580762 + 0.211380i −0.580762 + 0.211380i −0.615661 0.788011i \(-0.711111\pi\)
0.0348995 + 0.999391i \(0.488889\pi\)
\(728\) 0 0
\(729\) 0.913545 + 0.406737i 0.913545 + 0.406737i
\(730\) 0 0
\(731\) −0.337256 + 0.179322i −0.337256 + 0.179322i
\(732\) 0 0
\(733\) −1.47815 + 0.658114i −1.47815 + 0.658114i −0.978148 0.207912i \(-0.933333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1.42864 + 0.759621i 1.42864 + 0.759621i 0.990268 0.139173i \(-0.0444444\pi\)
0.438371 + 0.898794i \(0.355556\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.990268 0.139173i \(-0.0444444\pi\)
−0.990268 + 0.139173i \(0.955556\pi\)
\(744\) 0 0
\(745\) −3.11071 + 0.891981i −3.11071 + 0.891981i
\(746\) 0 0
\(747\) −1.23949 + 1.04005i −1.23949 + 1.04005i
\(748\) 0.413545 0.459289i 0.413545 0.459289i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.719340 0.694658i \(-0.755556\pi\)
0.719340 + 0.694658i \(0.244444\pi\)
\(752\) 0.564602 0.251377i 0.564602 0.251377i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.69610 1.05984i 1.69610 1.05984i 0.848048 0.529919i \(-0.177778\pi\)
0.848048 0.529919i \(-0.177778\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.618034 1.90211i 0.618034 1.90211i 0.309017 0.951057i \(-0.400000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −0.0564686 + 1.61705i −0.0564686 + 1.61705i
\(765\) 0.615661 + 0.788011i 0.615661 + 0.788011i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −0.280969 1.59345i −0.280969 1.59345i −0.719340 0.694658i \(-0.755556\pi\)
0.438371 0.898794i \(-0.355556\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 0.241922 0.970296i \(-0.422222\pi\)
−0.241922 + 0.970296i \(0.577778\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.904793 1.34141i 0.904793 1.34141i
\(785\) −2.61166 + 0.182625i −2.61166 + 0.182625i
\(786\) 0 0
\(787\) 0 0 −0.978148 0.207912i \(-0.933333\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(788\) 0.876742 1.79759i 0.876742 1.79759i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 1.16392 1.12398i 1.16392 1.12398i
\(797\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(798\) 0 0
\(799\) −0.309017 0.224514i −0.309017 0.224514i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.87939 + 0.684040i −1.87939 + 0.684040i
\(804\) 0 0
\(805\) −1.58268 + 0.336408i −1.58268 + 0.336408i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.58268 + 0.336408i 1.58268 + 0.336408i 0.913545 0.406737i \(-0.133333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(810\) 0 0
\(811\) 0 0 0.241922 0.970296i \(-0.422222\pi\)
−0.241922 + 0.970296i \(0.577778\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0.454617 2.57826i 0.454617 2.57826i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0.345600 + 0.512373i 0.345600 + 0.512373i 0.961262 0.275637i \(-0.0888889\pi\)
−0.615661 + 0.788011i \(0.711111\pi\)
\(822\) 0 0
\(823\) 0.606126 + 1.50021i 0.606126 + 1.50021i 0.848048 + 0.529919i \(0.177778\pi\)
−0.241922 + 0.970296i \(0.577778\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.990268 0.139173i \(-0.955556\pi\)
0.990268 + 0.139173i \(0.0444444\pi\)
\(828\) −0.0646021 0.614648i −0.0646021 0.614648i
\(829\) 0 0 0.104528 0.994522i \(-0.466667\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.997564 0.0697565i −0.997564 0.0697565i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.997564 0.0697565i \(-0.977778\pi\)
0.997564 + 0.0697565i \(0.0222222\pi\)
\(840\) 0 0
\(841\) −0.615661 0.788011i −0.615661 0.788011i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.60229 0.225187i −1.60229 0.225187i
\(846\) 0 0
\(847\) 0.169131 + 1.60917i 0.169131 + 1.60917i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0.612019 0.0860137i 0.612019 0.0860137i 0.173648 0.984808i \(-0.444444\pi\)
0.438371 + 0.898794i \(0.355556\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(858\) 0 0
\(859\) −0.580762 0.211380i −0.580762 0.211380i 0.0348995 0.999391i \(-0.488889\pi\)
−0.615661 + 0.788011i \(0.711111\pi\)
\(860\) −0.0348995 0.999391i −0.0348995 0.999391i
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.978148 0.207912i \(-0.933333\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(876\) 0 0
\(877\) 0 0 −0.997564 0.0697565i \(-0.977778\pi\)
0.997564 + 0.0697565i \(0.0222222\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0.606126 + 1.50021i 0.606126 + 1.50021i
\(881\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(882\) 0 0
\(883\) 1.16392 + 1.12398i 1.16392 + 1.12398i 0.990268 + 0.139173i \(0.0444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.997564 0.0697565i \(-0.0222222\pi\)
−0.997564 + 0.0697565i \(0.977778\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0.173648 0.984808i 0.173648 0.984808i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −1.58268 + 0.336408i −1.58268 + 0.336408i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 −0.615661 0.788011i \(-0.711111\pi\)
0.615661 + 0.788011i \(0.288889\pi\)
\(908\) 0 0
\(909\) 0.391438 + 1.56997i 0.391438 + 1.56997i
\(910\) 0 0
\(911\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(912\) 0 0
\(913\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(914\) 0 0
\(915\) 0 0
\(916\) 0.594092 0.170353i 0.594092 0.170353i
\(917\) 2.51662 + 0.721628i 2.51662 + 0.721628i
\(918\) 0 0
\(919\) −1.08268 + 1.20243i −1.08268 + 1.20243i −0.104528 + 0.994522i \(0.533333\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0.612019 0.0860137i 0.612019 0.0860137i 0.173648 0.984808i \(-0.444444\pi\)
0.438371 + 0.898794i \(0.355556\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 1.30902 0.951057i 1.30902 0.951057i
\(933\) 0 0
\(934\) 0 0
\(935\) 0.615661 0.788011i 0.615661 0.788011i
\(936\) 0 0
\(937\) −0.231520 0.573031i −0.231520 0.573031i 0.766044 0.642788i \(-0.222222\pi\)
−0.997564 + 0.0697565i \(0.977778\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0.882948 0.469472i 0.882948 0.469472i
\(941\) 0 0 0.882948 0.469472i \(-0.155556\pi\)
−0.882948 + 0.469472i \(0.844444\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.23949 1.04005i −1.23949 1.04005i −0.997564 0.0697565i \(-0.977778\pi\)
−0.241922 0.970296i \(-0.577778\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.241922 0.970296i \(-0.577778\pi\)
0.241922 + 0.970296i \(0.422222\pi\)
\(954\) 0 0
\(955\) 0.0913681 + 2.61644i 0.0913681 + 2.61644i
\(956\) 0.473442 0.397265i 0.473442 0.397265i
\(957\) 0 0
\(958\) 0 0
\(959\) 2.59256 + 0.364360i 2.59256 + 0.364360i
\(960\) 0 0
\(961\) 0.913545 0.406737i 0.913545 0.406737i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0.107320 0.608645i 0.107320 0.608645i −0.882948 0.469472i \(-0.844444\pi\)
0.990268 0.139173i \(-0.0444444\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.438371 0.898794i \(-0.644444\pi\)
0.438371 + 0.898794i \(0.355556\pi\)
\(972\) 0 0
\(973\) −0.0348995 + 0.999391i −0.0348995 + 0.999391i
\(974\) 0 0
\(975\) 0 0
\(976\) 0.564602 + 0.251377i 0.564602 + 0.251377i
\(977\) 0 0 −0.669131 0.743145i \(-0.733333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 1.30902 2.26728i 1.30902 2.26728i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.961262 0.275637i \(-0.911111\pi\)
0.961262 + 0.275637i \(0.0888889\pi\)
\(984\) 0 0
\(985\) 1.21225 3.00043i 1.21225 3.00043i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.381966 0.381966
\(990\) 0 0
\(991\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.75181 1.94558i 1.75181 1.94558i
\(996\) 0 0
\(997\) −0.709299 + 1.45428i −0.709299 + 1.45428i 0.173648 + 0.984808i \(0.444444\pi\)
−0.882948 + 0.469472i \(0.844444\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3971.1.bc.a.1560.1 24
11.5 even 5 inner 3971.1.bc.a.2282.1 24
19.2 odd 18 3971.1.s.a.3903.1 8
19.3 odd 18 209.1.m.a.75.1 4
19.4 even 9 inner 3971.1.bc.a.1571.1 24
19.5 even 9 3971.1.s.a.2957.1 8
19.6 even 9 inner 3971.1.bc.a.262.1 24
19.7 even 3 inner 3971.1.bc.a.2473.1 24
19.8 odd 6 inner 3971.1.bc.a.1021.1 24
19.9 even 9 inner 3971.1.bc.a.3221.1 24
19.10 odd 18 inner 3971.1.bc.a.3221.1 24
19.11 even 3 inner 3971.1.bc.a.1021.1 24
19.12 odd 6 inner 3971.1.bc.a.2473.1 24
19.13 odd 18 inner 3971.1.bc.a.262.1 24
19.14 odd 18 3971.1.s.a.2957.1 8
19.15 odd 18 inner 3971.1.bc.a.1571.1 24
19.16 even 9 209.1.m.a.75.1 4
19.17 even 9 3971.1.s.a.3903.1 8
19.18 odd 2 CM 3971.1.bc.a.1560.1 24
57.35 odd 18 1881.1.bv.a.1747.1 4
57.41 even 18 1881.1.bv.a.1747.1 4
76.3 even 18 3344.1.bx.a.1329.1 4
76.35 odd 18 3344.1.bx.a.1329.1 4
209.3 odd 90 2299.1.m.b.1291.1 4
209.5 even 45 3971.1.s.a.3679.1 8
209.16 even 45 209.1.m.a.170.1 yes 4
209.27 odd 30 inner 3971.1.bc.a.1743.1 24
209.35 odd 90 2299.1.m.c.1576.1 4
209.41 even 90 2299.1.m.c.1291.1 4
209.49 even 15 inner 3971.1.bc.a.1743.1 24
209.54 odd 18 2299.1.m.a.493.1 4
209.60 odd 90 209.1.m.a.170.1 yes 4
209.71 odd 90 3971.1.s.a.3679.1 8
209.73 odd 90 2299.1.b.b.1937.1 2
209.79 even 90 2299.1.m.c.1576.1 4
209.82 even 45 inner 3971.1.bc.a.984.1 24
209.92 even 45 2299.1.b.a.1937.1 2
209.93 even 45 3971.1.s.a.654.1 8
209.98 even 18 2299.1.m.a.493.1 4
209.104 even 45 inner 3971.1.bc.a.3943.1 24
209.117 even 90 2299.1.b.b.1937.1 2
209.126 odd 30 inner 3971.1.bc.a.3195.1 24
209.130 even 45 2299.1.m.b.1576.1 4
209.136 odd 90 2299.1.b.a.1937.1 2
209.137 even 45 inner 3971.1.bc.a.2293.1 24
209.148 odd 90 inner 3971.1.bc.a.2293.1 24
209.149 odd 90 2299.1.m.a.1842.1 4
209.159 even 15 inner 3971.1.bc.a.3195.1 24
209.168 even 45 2299.1.m.b.1291.1 4
209.170 odd 10 inner 3971.1.bc.a.2282.1 24
209.174 odd 90 2299.1.m.b.1576.1 4
209.181 odd 90 inner 3971.1.bc.a.3943.1 24
209.192 odd 90 3971.1.s.a.654.1 8
209.193 even 90 2299.1.m.a.1842.1 4
209.203 odd 90 inner 3971.1.bc.a.984.1 24
209.206 odd 90 2299.1.m.c.1291.1 4
627.269 even 90 1881.1.bv.a.379.1 4
627.434 odd 90 1881.1.bv.a.379.1 4
836.643 odd 90 3344.1.bx.a.1633.1 4
836.687 even 90 3344.1.bx.a.1633.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
209.1.m.a.75.1 4 19.3 odd 18
209.1.m.a.75.1 4 19.16 even 9
209.1.m.a.170.1 yes 4 209.16 even 45
209.1.m.a.170.1 yes 4 209.60 odd 90
1881.1.bv.a.379.1 4 627.269 even 90
1881.1.bv.a.379.1 4 627.434 odd 90
1881.1.bv.a.1747.1 4 57.35 odd 18
1881.1.bv.a.1747.1 4 57.41 even 18
2299.1.b.a.1937.1 2 209.92 even 45
2299.1.b.a.1937.1 2 209.136 odd 90
2299.1.b.b.1937.1 2 209.73 odd 90
2299.1.b.b.1937.1 2 209.117 even 90
2299.1.m.a.493.1 4 209.54 odd 18
2299.1.m.a.493.1 4 209.98 even 18
2299.1.m.a.1842.1 4 209.149 odd 90
2299.1.m.a.1842.1 4 209.193 even 90
2299.1.m.b.1291.1 4 209.3 odd 90
2299.1.m.b.1291.1 4 209.168 even 45
2299.1.m.b.1576.1 4 209.130 even 45
2299.1.m.b.1576.1 4 209.174 odd 90
2299.1.m.c.1291.1 4 209.41 even 90
2299.1.m.c.1291.1 4 209.206 odd 90
2299.1.m.c.1576.1 4 209.35 odd 90
2299.1.m.c.1576.1 4 209.79 even 90
3344.1.bx.a.1329.1 4 76.3 even 18
3344.1.bx.a.1329.1 4 76.35 odd 18
3344.1.bx.a.1633.1 4 836.643 odd 90
3344.1.bx.a.1633.1 4 836.687 even 90
3971.1.s.a.654.1 8 209.93 even 45
3971.1.s.a.654.1 8 209.192 odd 90
3971.1.s.a.2957.1 8 19.5 even 9
3971.1.s.a.2957.1 8 19.14 odd 18
3971.1.s.a.3679.1 8 209.5 even 45
3971.1.s.a.3679.1 8 209.71 odd 90
3971.1.s.a.3903.1 8 19.2 odd 18
3971.1.s.a.3903.1 8 19.17 even 9
3971.1.bc.a.262.1 24 19.6 even 9 inner
3971.1.bc.a.262.1 24 19.13 odd 18 inner
3971.1.bc.a.984.1 24 209.82 even 45 inner
3971.1.bc.a.984.1 24 209.203 odd 90 inner
3971.1.bc.a.1021.1 24 19.8 odd 6 inner
3971.1.bc.a.1021.1 24 19.11 even 3 inner
3971.1.bc.a.1560.1 24 1.1 even 1 trivial
3971.1.bc.a.1560.1 24 19.18 odd 2 CM
3971.1.bc.a.1571.1 24 19.4 even 9 inner
3971.1.bc.a.1571.1 24 19.15 odd 18 inner
3971.1.bc.a.1743.1 24 209.27 odd 30 inner
3971.1.bc.a.1743.1 24 209.49 even 15 inner
3971.1.bc.a.2282.1 24 11.5 even 5 inner
3971.1.bc.a.2282.1 24 209.170 odd 10 inner
3971.1.bc.a.2293.1 24 209.137 even 45 inner
3971.1.bc.a.2293.1 24 209.148 odd 90 inner
3971.1.bc.a.2473.1 24 19.7 even 3 inner
3971.1.bc.a.2473.1 24 19.12 odd 6 inner
3971.1.bc.a.3195.1 24 209.126 odd 30 inner
3971.1.bc.a.3195.1 24 209.159 even 15 inner
3971.1.bc.a.3221.1 24 19.9 even 9 inner
3971.1.bc.a.3221.1 24 19.10 odd 18 inner
3971.1.bc.a.3943.1 24 209.104 even 45 inner
3971.1.bc.a.3943.1 24 209.181 odd 90 inner