L(s) = 1 | + (−2.99 + 2.99i)3-s + (6.68 + 6.68i)7-s + 9.09i·9-s − 63.1i·11-s + (−28.2 − 28.2i)13-s + (−30.3 + 30.3i)17-s + 22.2·19-s − 40.0·21-s + (86.5 − 86.5i)23-s + (−107. − 107. i)27-s + 188. i·29-s + 71.2i·31-s + (188. + 188. i)33-s + (217. − 217. i)37-s + 168.·39-s + ⋯ |
L(s) = 1 | + (−0.575 + 0.575i)3-s + (0.361 + 0.361i)7-s + 0.336i·9-s − 1.73i·11-s + (−0.602 − 0.602i)13-s + (−0.433 + 0.433i)17-s + 0.268·19-s − 0.415·21-s + (0.784 − 0.784i)23-s + (−0.769 − 0.769i)27-s + 1.20i·29-s + 0.413i·31-s + (0.996 + 0.996i)33-s + (0.964 − 0.964i)37-s + 0.693·39-s + ⋯ |
Λ(s)=(=(400s/2ΓC(s)L(s)(0.880+0.473i)Λ(4−s)
Λ(s)=(=(400s/2ΓC(s+3/2)L(s)(0.880+0.473i)Λ(1−s)
Degree: |
2 |
Conductor: |
400
= 24⋅52
|
Sign: |
0.880+0.473i
|
Analytic conductor: |
23.6007 |
Root analytic conductor: |
4.85806 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ400(143,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 400, ( :3/2), 0.880+0.473i)
|
Particular Values
L(2) |
≈ |
1.318063633 |
L(21) |
≈ |
1.318063633 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(2.99−2.99i)T−27iT2 |
| 7 | 1+(−6.68−6.68i)T+343iT2 |
| 11 | 1+63.1iT−1.33e3T2 |
| 13 | 1+(28.2+28.2i)T+2.19e3iT2 |
| 17 | 1+(30.3−30.3i)T−4.91e3iT2 |
| 19 | 1−22.2T+6.85e3T2 |
| 23 | 1+(−86.5+86.5i)T−1.21e4iT2 |
| 29 | 1−188.iT−2.43e4T2 |
| 31 | 1−71.2iT−2.97e4T2 |
| 37 | 1+(−217.+217.i)T−5.06e4iT2 |
| 41 | 1+4.57T+6.89e4T2 |
| 43 | 1+(−392.+392.i)T−7.95e4iT2 |
| 47 | 1+(280.+280.i)T+1.03e5iT2 |
| 53 | 1+(−82.3−82.3i)T+1.48e5iT2 |
| 59 | 1−794.T+2.05e5T2 |
| 61 | 1−714.T+2.26e5T2 |
| 67 | 1+(−373.−373.i)T+3.00e5iT2 |
| 71 | 1+528.iT−3.57e5T2 |
| 73 | 1+(−531.−531.i)T+3.89e5iT2 |
| 79 | 1+349.T+4.93e5T2 |
| 83 | 1+(−112.+112.i)T−5.71e5iT2 |
| 89 | 1−424.iT−7.04e5T2 |
| 97 | 1+(501.−501.i)T−9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.92469615219343023655939263719, −10.10854258770323050739733462813, −8.832745098504614378296036253465, −8.229777221881297331462095969995, −6.93335114427589800256865515918, −5.62524950371248648185549050737, −5.19278064360904661654743561138, −3.83094657255593621080382250453, −2.50270169543341845881814358070, −0.57525860402511737446073501773,
1.07327536206683353925103534015, 2.36630351252272570435169948379, 4.18138792932687291488371482227, 5.02776292652152002668864732555, 6.36502129284057763690112419594, 7.15337756203982981649716660407, 7.80106818225563519239630346585, 9.430698802162173229527846855854, 9.788146008405428812842714074200, 11.28029510031533832678395674715