L(s) = 1 | + (−2.99 − 2.99i)3-s + (6.68 − 6.68i)7-s − 9.09i·9-s + 63.1i·11-s + (−28.2 + 28.2i)13-s + (−30.3 − 30.3i)17-s + 22.2·19-s − 40.0·21-s + (86.5 + 86.5i)23-s + (−107. + 107. i)27-s − 188. i·29-s − 71.2i·31-s + (188. − 188. i)33-s + (217. + 217. i)37-s + 168.·39-s + ⋯ |
L(s) = 1 | + (−0.575 − 0.575i)3-s + (0.361 − 0.361i)7-s − 0.336i·9-s + 1.73i·11-s + (−0.602 + 0.602i)13-s + (−0.433 − 0.433i)17-s + 0.268·19-s − 0.415·21-s + (0.784 + 0.784i)23-s + (−0.769 + 0.769i)27-s − 1.20i·29-s − 0.413i·31-s + (0.996 − 0.996i)33-s + (0.964 + 0.964i)37-s + 0.693·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.880 - 0.473i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.880 - 0.473i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.318063633\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.318063633\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (2.99 + 2.99i)T + 27iT^{2} \) |
| 7 | \( 1 + (-6.68 + 6.68i)T - 343iT^{2} \) |
| 11 | \( 1 - 63.1iT - 1.33e3T^{2} \) |
| 13 | \( 1 + (28.2 - 28.2i)T - 2.19e3iT^{2} \) |
| 17 | \( 1 + (30.3 + 30.3i)T + 4.91e3iT^{2} \) |
| 19 | \( 1 - 22.2T + 6.85e3T^{2} \) |
| 23 | \( 1 + (-86.5 - 86.5i)T + 1.21e4iT^{2} \) |
| 29 | \( 1 + 188. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 71.2iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (-217. - 217. i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 + 4.57T + 6.89e4T^{2} \) |
| 43 | \( 1 + (-392. - 392. i)T + 7.95e4iT^{2} \) |
| 47 | \( 1 + (280. - 280. i)T - 1.03e5iT^{2} \) |
| 53 | \( 1 + (-82.3 + 82.3i)T - 1.48e5iT^{2} \) |
| 59 | \( 1 - 794.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 714.T + 2.26e5T^{2} \) |
| 67 | \( 1 + (-373. + 373. i)T - 3.00e5iT^{2} \) |
| 71 | \( 1 - 528. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (-531. + 531. i)T - 3.89e5iT^{2} \) |
| 79 | \( 1 + 349.T + 4.93e5T^{2} \) |
| 83 | \( 1 + (-112. - 112. i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 + 424. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + (501. + 501. i)T + 9.12e5iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.28029510031533832678395674715, −9.788146008405428812842714074200, −9.430698802162173229527846855854, −7.80106818225563519239630346585, −7.15337756203982981649716660407, −6.36502129284057763690112419594, −5.02776292652152002668864732555, −4.18138792932687291488371482227, −2.36630351252272570435169948379, −1.07327536206683353925103534015,
0.57525860402511737446073501773, 2.50270169543341845881814358070, 3.83094657255593621080382250453, 5.19278064360904661654743561138, 5.62524950371248648185549050737, 6.93335114427589800256865515918, 8.229777221881297331462095969995, 8.832745098504614378296036253465, 10.10854258770323050739733462813, 10.92469615219343023655939263719