L(s) = 1 | + 4·2-s + 9·3-s + 16·4-s − 25·5-s + 36·6-s − 49·7-s + 64·8-s + 81·9-s − 100·10-s − 668·11-s + 144·12-s − 366·13-s − 196·14-s − 225·15-s + 256·16-s − 34·17-s + 324·18-s − 2.01e3·19-s − 400·20-s − 441·21-s − 2.67e3·22-s + 1.90e3·23-s + 576·24-s + 625·25-s − 1.46e3·26-s + 729·27-s − 784·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 1.66·11-s + 0.288·12-s − 0.600·13-s − 0.267·14-s − 0.258·15-s + 1/4·16-s − 0.0285·17-s + 0.235·18-s − 1.28·19-s − 0.223·20-s − 0.218·21-s − 1.17·22-s + 0.752·23-s + 0.204·24-s + 1/5·25-s − 0.424·26-s + 0.192·27-s − 0.188·28-s + ⋯ |
Λ(s)=(=(210s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(210s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−p2T |
| 3 | 1−p2T |
| 5 | 1+p2T |
| 7 | 1+p2T |
good | 11 | 1+668T+p5T2 |
| 13 | 1+366T+p5T2 |
| 17 | 1+2pT+p5T2 |
| 19 | 1+2016T+p5T2 |
| 23 | 1−1908T+p5T2 |
| 29 | 1+5754T+p5T2 |
| 31 | 1+52T+p5T2 |
| 37 | 1+10594T+p5T2 |
| 41 | 1+418T+p5T2 |
| 43 | 1−6676T+p5T2 |
| 47 | 1−1472T+p5T2 |
| 53 | 1−19834T+p5T2 |
| 59 | 1−10492T+p5T2 |
| 61 | 1+38810T+p5T2 |
| 67 | 1+61428T+p5T2 |
| 71 | 1+7936T+p5T2 |
| 73 | 1−21134T+p5T2 |
| 79 | 1−87088T+p5T2 |
| 83 | 1+1244pT+p5T2 |
| 89 | 1+49490T+p5T2 |
| 97 | 1−125630T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.95948543027083823034815999019, −10.24742061042926004887010221875, −8.909754932660265391381729438469, −7.80938077767942718211155766737, −7.01091259173520728062816764614, −5.56542516812400273773836393562, −4.47135984739346333135235060796, −3.21530318792644663060752083770, −2.20661752654367061804889680007, 0,
2.20661752654367061804889680007, 3.21530318792644663060752083770, 4.47135984739346333135235060796, 5.56542516812400273773836393562, 7.01091259173520728062816764614, 7.80938077767942718211155766737, 8.909754932660265391381729438469, 10.24742061042926004887010221875, 10.95948543027083823034815999019