L(s) = 1 | + (0.707 + 0.707i)3-s + (0.258 + 0.965i)7-s + 1.00i·9-s + (0.707 + 0.707i)13-s − 1.73·19-s + (−0.500 + 0.866i)21-s + (−0.707 + 0.707i)27-s − 1.73i·31-s + 1.00i·39-s + (1.22 − 1.22i)43-s + (−0.866 + 0.499i)49-s + (−1.22 − 1.22i)57-s + 1.73i·61-s + (−0.965 + 0.258i)63-s + (1.22 + 1.22i)67-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)3-s + (0.258 + 0.965i)7-s + 1.00i·9-s + (0.707 + 0.707i)13-s − 1.73·19-s + (−0.500 + 0.866i)21-s + (−0.707 + 0.707i)27-s − 1.73i·31-s + 1.00i·39-s + (1.22 − 1.22i)43-s + (−0.866 + 0.499i)49-s + (−1.22 − 1.22i)57-s + 1.73i·61-s + (−0.965 + 0.258i)63-s + (1.22 + 1.22i)67-s + ⋯ |
Λ(s)=(=(2100s/2ΓC(s)L(s)(0.0706−0.997i)Λ(1−s)
Λ(s)=(=(2100s/2ΓC(s)L(s)(0.0706−0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
2100
= 22⋅3⋅52⋅7
|
Sign: |
0.0706−0.997i
|
Analytic conductor: |
1.04803 |
Root analytic conductor: |
1.02373 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2100(2057,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2100, ( :0), 0.0706−0.997i)
|
Particular Values
L(21) |
≈ |
1.478263268 |
L(21) |
≈ |
1.478263268 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.707−0.707i)T |
| 5 | 1 |
| 7 | 1+(−0.258−0.965i)T |
good | 11 | 1−T2 |
| 13 | 1+(−0.707−0.707i)T+iT2 |
| 17 | 1+iT2 |
| 19 | 1+1.73T+T2 |
| 23 | 1+iT2 |
| 29 | 1+T2 |
| 31 | 1+1.73iT−T2 |
| 37 | 1+iT2 |
| 41 | 1+T2 |
| 43 | 1+(−1.22+1.22i)T−iT2 |
| 47 | 1+iT2 |
| 53 | 1+iT2 |
| 59 | 1−T2 |
| 61 | 1−1.73iT−T2 |
| 67 | 1+(−1.22−1.22i)T+iT2 |
| 71 | 1−T2 |
| 73 | 1+(−1.41−1.41i)T+iT2 |
| 79 | 1+2iT−T2 |
| 83 | 1−iT2 |
| 89 | 1−T2 |
| 97 | 1+(−0.707+0.707i)T−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.314367506554107893165909924810, −8.684351906742652740344929119883, −8.293475794220688867863316582286, −7.26866737789852413349185359918, −6.18661038426836517400163536251, −5.51416036628367077679939570871, −4.38684835536315833433932550365, −3.90742980170201014452337436259, −2.59860272279242176024236635335, −1.96360172655586666706142522880,
1.01380578113659531239758632207, 2.12040166946420337732750179844, 3.28834153092104704587477894295, 4.00095611108741010692426345730, 5.02761707728075642182977994399, 6.33827192082420388244126585189, 6.69596310019873133251717065592, 7.76944351024615759340716469239, 8.173690481748484119114611249295, 8.921161231531229771691319567445