L(s) = 1 | + (0.707 + 0.707i)3-s + (0.258 + 0.965i)7-s + 1.00i·9-s + (0.707 + 0.707i)13-s − 1.73·19-s + (−0.500 + 0.866i)21-s + (−0.707 + 0.707i)27-s − 1.73i·31-s + 1.00i·39-s + (1.22 − 1.22i)43-s + (−0.866 + 0.499i)49-s + (−1.22 − 1.22i)57-s + 1.73i·61-s + (−0.965 + 0.258i)63-s + (1.22 + 1.22i)67-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)3-s + (0.258 + 0.965i)7-s + 1.00i·9-s + (0.707 + 0.707i)13-s − 1.73·19-s + (−0.500 + 0.866i)21-s + (−0.707 + 0.707i)27-s − 1.73i·31-s + 1.00i·39-s + (1.22 − 1.22i)43-s + (−0.866 + 0.499i)49-s + (−1.22 − 1.22i)57-s + 1.73i·61-s + (−0.965 + 0.258i)63-s + (1.22 + 1.22i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0706 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0706 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.478263268\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.478263268\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-0.258 - 0.965i)T \) |
good | 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + 1.73T + T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + 1.73iT - T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (-1.22 + 1.22i)T - iT^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - 1.73iT - T^{2} \) |
| 67 | \( 1 + (-1.22 - 1.22i)T + iT^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-1.41 - 1.41i)T + iT^{2} \) |
| 79 | \( 1 + 2iT - T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.314367506554107893165909924810, −8.684351906742652740344929119883, −8.293475794220688867863316582286, −7.26866737789852413349185359918, −6.18661038426836517400163536251, −5.51416036628367077679939570871, −4.38684835536315833433932550365, −3.90742980170201014452337436259, −2.59860272279242176024236635335, −1.96360172655586666706142522880,
1.01380578113659531239758632207, 2.12040166946420337732750179844, 3.28834153092104704587477894295, 4.00095611108741010692426345730, 5.02761707728075642182977994399, 6.33827192082420388244126585189, 6.69596310019873133251717065592, 7.76944351024615759340716469239, 8.173690481748484119114611249295, 8.921161231531229771691319567445