L(s) = 1 | + (−0.258 + 0.965i)3-s + (−0.707 + 0.707i)7-s + (−0.866 − 0.499i)9-s − 1.73i·11-s + (−0.707 − 0.707i)13-s + (−1.22 − 1.22i)17-s + (−0.500 − 0.866i)21-s + (0.707 − 0.707i)27-s − 1.73·29-s + (1.67 + 0.448i)33-s + (0.866 − 0.500i)39-s + (1.22 + 1.22i)47-s − 1.00i·49-s + (1.49 − 0.866i)51-s + (0.965 − 0.258i)63-s + ⋯ |
L(s) = 1 | + (−0.258 + 0.965i)3-s + (−0.707 + 0.707i)7-s + (−0.866 − 0.499i)9-s − 1.73i·11-s + (−0.707 − 0.707i)13-s + (−1.22 − 1.22i)17-s + (−0.500 − 0.866i)21-s + (0.707 − 0.707i)27-s − 1.73·29-s + (1.67 + 0.448i)33-s + (0.866 − 0.500i)39-s + (1.22 + 1.22i)47-s − 1.00i·49-s + (1.49 − 0.866i)51-s + (0.965 − 0.258i)63-s + ⋯ |
Λ(s)=(=(2100s/2ΓC(s)L(s)(−0.0299+0.999i)Λ(1−s)
Λ(s)=(=(2100s/2ΓC(s)L(s)(−0.0299+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
2100
= 22⋅3⋅52⋅7
|
Sign: |
−0.0299+0.999i
|
Analytic conductor: |
1.04803 |
Root analytic conductor: |
1.02373 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2100(2057,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2100, ( :0), −0.0299+0.999i)
|
Particular Values
L(21) |
≈ |
0.3908062248 |
L(21) |
≈ |
0.3908062248 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.258−0.965i)T |
| 5 | 1 |
| 7 | 1+(0.707−0.707i)T |
good | 11 | 1+1.73iT−T2 |
| 13 | 1+(0.707+0.707i)T+iT2 |
| 17 | 1+(1.22+1.22i)T+iT2 |
| 19 | 1+T2 |
| 23 | 1+iT2 |
| 29 | 1+1.73T+T2 |
| 31 | 1−T2 |
| 37 | 1+iT2 |
| 41 | 1+T2 |
| 43 | 1−iT2 |
| 47 | 1+(−1.22−1.22i)T+iT2 |
| 53 | 1+iT2 |
| 59 | 1−T2 |
| 61 | 1−T2 |
| 67 | 1+iT2 |
| 71 | 1−T2 |
| 73 | 1+(1.41+1.41i)T+iT2 |
| 79 | 1−iT−T2 |
| 83 | 1−iT2 |
| 89 | 1−T2 |
| 97 | 1+(0.707−0.707i)T−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.143604353614479549474948401126, −8.659102868117071935943441959170, −7.60296824848240014304343771188, −6.51951082459183972920723039447, −5.73270237183867089668558820625, −5.27921845411633366867182406037, −4.17418227821669131734218705865, −3.17305346256028909147446746792, −2.61652480915699039288634702198, −0.26404630221946519279447254916,
1.71276494134743300240203812512, 2.37329597507435368852888912578, 3.87457871573254250416683507654, 4.58440935401040042313365280920, 5.69626043129586567798778718291, 6.63449778600294310569600708940, 7.11599646064126455582388902905, 7.59779598528324878743823523163, 8.725776025793042739115247657107, 9.473761006526495151673043249086