L(s) = 1 | + (−0.258 + 0.965i)3-s + (−0.707 + 0.707i)7-s + (−0.866 − 0.499i)9-s − 1.73i·11-s + (−0.707 − 0.707i)13-s + (−1.22 − 1.22i)17-s + (−0.500 − 0.866i)21-s + (0.707 − 0.707i)27-s − 1.73·29-s + (1.67 + 0.448i)33-s + (0.866 − 0.500i)39-s + (1.22 + 1.22i)47-s − 1.00i·49-s + (1.49 − 0.866i)51-s + (0.965 − 0.258i)63-s + ⋯ |
L(s) = 1 | + (−0.258 + 0.965i)3-s + (−0.707 + 0.707i)7-s + (−0.866 − 0.499i)9-s − 1.73i·11-s + (−0.707 − 0.707i)13-s + (−1.22 − 1.22i)17-s + (−0.500 − 0.866i)21-s + (0.707 − 0.707i)27-s − 1.73·29-s + (1.67 + 0.448i)33-s + (0.866 − 0.500i)39-s + (1.22 + 1.22i)47-s − 1.00i·49-s + (1.49 − 0.866i)51-s + (0.965 − 0.258i)63-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0299 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0299 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3908062248\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3908062248\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.258 - 0.965i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (0.707 - 0.707i)T \) |
good | 11 | \( 1 + 1.73iT - T^{2} \) |
| 13 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 17 | \( 1 + (1.22 + 1.22i)T + iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 + 1.73T + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (-1.22 - 1.22i)T + iT^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (1.41 + 1.41i)T + iT^{2} \) |
| 79 | \( 1 - iT - T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.143604353614479549474948401126, −8.659102868117071935943441959170, −7.60296824848240014304343771188, −6.51951082459183972920723039447, −5.73270237183867089668558820625, −5.27921845411633366867182406037, −4.17418227821669131734218705865, −3.17305346256028909147446746792, −2.61652480915699039288634702198, −0.26404630221946519279447254916,
1.71276494134743300240203812512, 2.37329597507435368852888912578, 3.87457871573254250416683507654, 4.58440935401040042313365280920, 5.69626043129586567798778718291, 6.63449778600294310569600708940, 7.11599646064126455582388902905, 7.59779598528324878743823523163, 8.725776025793042739115247657107, 9.473761006526495151673043249086