L(s) = 1 | + (−1 − 1.73i)5-s + (0.5 − 0.866i)7-s + (−0.5 − 0.866i)9-s + (−0.5 + 0.866i)11-s + (0.5 − 0.866i)17-s + (0.5 + 0.866i)19-s + (−0.5 − 0.866i)23-s + (−1.49 + 2.59i)25-s − 1.99·35-s − 2·43-s + (−0.999 + 1.73i)45-s + (−0.5 − 0.866i)47-s + (−0.499 − 0.866i)49-s + 1.99·55-s + (0.5 + 0.866i)61-s + ⋯ |
L(s) = 1 | + (−1 − 1.73i)5-s + (0.5 − 0.866i)7-s + (−0.5 − 0.866i)9-s + (−0.5 + 0.866i)11-s + (0.5 − 0.866i)17-s + (0.5 + 0.866i)19-s + (−0.5 − 0.866i)23-s + (−1.49 + 2.59i)25-s − 1.99·35-s − 2·43-s + (−0.999 + 1.73i)45-s + (−0.5 − 0.866i)47-s + (−0.499 − 0.866i)49-s + 1.99·55-s + (0.5 + 0.866i)61-s + ⋯ |
Λ(s)=(=(2128s/2ΓC(s)L(s)(−0.895+0.444i)Λ(1−s)
Λ(s)=(=(2128s/2ΓC(s)L(s)(−0.895+0.444i)Λ(1−s)
Degree: |
2 |
Conductor: |
2128
= 24⋅7⋅19
|
Sign: |
−0.895+0.444i
|
Analytic conductor: |
1.06201 |
Root analytic conductor: |
1.03053 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2128(417,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2128, ( :0), −0.895+0.444i)
|
Particular Values
L(21) |
≈ |
0.7213694160 |
L(21) |
≈ |
0.7213694160 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−0.5+0.866i)T |
| 19 | 1+(−0.5−0.866i)T |
good | 3 | 1+(0.5+0.866i)T2 |
| 5 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 11 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 13 | 1−T2 |
| 17 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 23 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 29 | 1−T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1+(0.5−0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1+2T+T2 |
| 47 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 53 | 1+(0.5+0.866i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 67 | 1+(0.5+0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1−T+T2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.813419084123669020957093842692, −8.117961030384810626376934711731, −7.66422529883835850432066947395, −6.77677885578494512395463355894, −5.44550877662521242518424498477, −4.88610224268032303691317605872, −4.13482737897399672125272523849, −3.37400144630158216670578194209, −1.62723535878004301495587793038, −0.50808988783476093579504957568,
2.12231506943909371368472235352, 2.99957676295888914589009525769, 3.56711007551147313958582428282, 4.88660129707229311740319485909, 5.73740428519226720156244440612, 6.47438792942762629308543098369, 7.46080611846657440068459729531, 8.065844195349755557467447390175, 8.453448668459997295752894324619, 9.746940635088989142203619801509