L(s) = 1 | + (0.707 − 0.707i)2-s − 1.00i·4-s + (0.707 + 0.707i)5-s + (−0.707 − 0.707i)8-s + 1.00·10-s + (0.707 − 0.707i)11-s + i·13-s − 1.00·16-s + (0.707 + 0.707i)17-s + (0.707 − 0.707i)20-s − 1.00i·22-s + (0.707 − 0.707i)23-s + 1.00i·25-s + (0.707 + 0.707i)26-s + (−0.707 − 0.707i)29-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s − 1.00i·4-s + (0.707 + 0.707i)5-s + (−0.707 − 0.707i)8-s + 1.00·10-s + (0.707 − 0.707i)11-s + i·13-s − 1.00·16-s + (0.707 + 0.707i)17-s + (0.707 − 0.707i)20-s − 1.00i·22-s + (0.707 − 0.707i)23-s + 1.00i·25-s + (0.707 + 0.707i)26-s + (−0.707 − 0.707i)29-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(0.584+0.811i)Λ(1−s)
Λ(s)=(=(2160s/2ΓC(s)L(s)(0.584+0.811i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
0.584+0.811i
|
Analytic conductor: |
1.07798 |
Root analytic conductor: |
1.03825 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(323,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :0), 0.584+0.811i)
|
Particular Values
L(21) |
≈ |
1.960942002 |
L(21) |
≈ |
1.960942002 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707+0.707i)T |
| 3 | 1 |
| 5 | 1+(−0.707−0.707i)T |
good | 7 | 1−iT2 |
| 11 | 1+(−0.707+0.707i)T−iT2 |
| 13 | 1−iT−T2 |
| 17 | 1+(−0.707−0.707i)T+iT2 |
| 19 | 1+iT2 |
| 23 | 1+(−0.707+0.707i)T−iT2 |
| 29 | 1+(0.707+0.707i)T+iT2 |
| 31 | 1+iT−T2 |
| 37 | 1−T2 |
| 41 | 1+1.41T+T2 |
| 43 | 1−iT−T2 |
| 47 | 1+(−0.707+0.707i)T−iT2 |
| 53 | 1+1.41iT−T2 |
| 59 | 1+iT2 |
| 61 | 1+(1+i)T+iT2 |
| 67 | 1−2iT−T2 |
| 71 | 1−T2 |
| 73 | 1−iT2 |
| 79 | 1+T+T2 |
| 83 | 1+1.41iT−T2 |
| 89 | 1−T2 |
| 97 | 1+(−1+i)T−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.354013577683039362561979008138, −8.658507239135255416879567362128, −7.37359938631955290868199707454, −6.38984767765554831714236969744, −6.11291575861926805959168187419, −5.12733775927277385797823846845, −4.06782762135547836546210517358, −3.35839383917449221237263436594, −2.34840303986454687848843743689, −1.41097822543807620976198449082,
1.49683688304972513288255829459, 2.85830229168009217376887100185, 3.75139535317117595261612570909, 4.91329552612959679352130677452, 5.28538032218939531118593246962, 6.10055728291232742287314563741, 7.06118132599108263225895833294, 7.59671826868683794236910766877, 8.646691367825217732399887287720, 9.154028413843418373892626934308