Properties

Label 2-2160-240.107-c0-0-1
Degree 22
Conductor 21602160
Sign 0.5840.811i0.584 - 0.811i
Analytic cond. 1.077981.07798
Root an. cond. 1.038251.03825
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 + 0.707i)2-s + 1.00i·4-s + (0.707 − 0.707i)5-s + (−0.707 + 0.707i)8-s + 1.00·10-s + (0.707 + 0.707i)11-s i·13-s − 1.00·16-s + (0.707 − 0.707i)17-s + (0.707 + 0.707i)20-s + 1.00i·22-s + (0.707 + 0.707i)23-s − 1.00i·25-s + (0.707 − 0.707i)26-s + (−0.707 + 0.707i)29-s + ⋯
L(s)  = 1  + (0.707 + 0.707i)2-s + 1.00i·4-s + (0.707 − 0.707i)5-s + (−0.707 + 0.707i)8-s + 1.00·10-s + (0.707 + 0.707i)11-s i·13-s − 1.00·16-s + (0.707 − 0.707i)17-s + (0.707 + 0.707i)20-s + 1.00i·22-s + (0.707 + 0.707i)23-s − 1.00i·25-s + (0.707 − 0.707i)26-s + (−0.707 + 0.707i)29-s + ⋯

Functional equation

Λ(s)=(2160s/2ΓC(s)L(s)=((0.5840.811i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.584 - 0.811i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(2160s/2ΓC(s)L(s)=((0.5840.811i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.584 - 0.811i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 21602160    =    243352^{4} \cdot 3^{3} \cdot 5
Sign: 0.5840.811i0.584 - 0.811i
Analytic conductor: 1.077981.07798
Root analytic conductor: 1.038251.03825
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ2160(107,)\chi_{2160} (107, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 2160, ( :0), 0.5840.811i)(2,\ 2160,\ (\ :0),\ 0.584 - 0.811i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.9609420021.960942002
L(12)L(\frac12) \approx 1.9609420021.960942002
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.7070.707i)T 1 + (-0.707 - 0.707i)T
3 1 1
5 1+(0.707+0.707i)T 1 + (-0.707 + 0.707i)T
good7 1+iT2 1 + iT^{2}
11 1+(0.7070.707i)T+iT2 1 + (-0.707 - 0.707i)T + iT^{2}
13 1+iTT2 1 + iT - T^{2}
17 1+(0.707+0.707i)TiT2 1 + (-0.707 + 0.707i)T - iT^{2}
19 1iT2 1 - iT^{2}
23 1+(0.7070.707i)T+iT2 1 + (-0.707 - 0.707i)T + iT^{2}
29 1+(0.7070.707i)TiT2 1 + (0.707 - 0.707i)T - iT^{2}
31 1iTT2 1 - iT - T^{2}
37 1T2 1 - T^{2}
41 1+1.41T+T2 1 + 1.41T + T^{2}
43 1+iTT2 1 + iT - T^{2}
47 1+(0.7070.707i)T+iT2 1 + (-0.707 - 0.707i)T + iT^{2}
53 11.41iTT2 1 - 1.41iT - T^{2}
59 1iT2 1 - iT^{2}
61 1+(1i)TiT2 1 + (1 - i)T - iT^{2}
67 1+2iTT2 1 + 2iT - T^{2}
71 1T2 1 - T^{2}
73 1+iT2 1 + iT^{2}
79 1+T+T2 1 + T + T^{2}
83 11.41iTT2 1 - 1.41iT - T^{2}
89 1T2 1 - T^{2}
97 1+(1i)T+iT2 1 + (-1 - i)T + iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.154028413843418373892626934308, −8.646691367825217732399887287720, −7.59671826868683794236910766877, −7.06118132599108263225895833294, −6.10055728291232742287314563741, −5.28538032218939531118593246962, −4.91329552612959679352130677452, −3.75139535317117595261612570909, −2.85830229168009217376887100185, −1.49683688304972513288255829459, 1.41097822543807620976198449082, 2.34840303986454687848843743689, 3.35839383917449221237263436594, 4.06782762135547836546210517358, 5.12733775927277385797823846845, 6.11291575861926805959168187419, 6.38984767765554831714236969744, 7.37359938631955290868199707454, 8.658507239135255416879567362128, 9.354013577683039362561979008138

Graph of the ZZ-function along the critical line