L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (0.707 − 0.707i)5-s + (−0.707 + 0.707i)8-s + 1.00·10-s + (0.707 + 0.707i)11-s − i·13-s − 1.00·16-s + (0.707 − 0.707i)17-s + (0.707 + 0.707i)20-s + 1.00i·22-s + (0.707 + 0.707i)23-s − 1.00i·25-s + (0.707 − 0.707i)26-s + (−0.707 + 0.707i)29-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (0.707 − 0.707i)5-s + (−0.707 + 0.707i)8-s + 1.00·10-s + (0.707 + 0.707i)11-s − i·13-s − 1.00·16-s + (0.707 − 0.707i)17-s + (0.707 + 0.707i)20-s + 1.00i·22-s + (0.707 + 0.707i)23-s − 1.00i·25-s + (0.707 − 0.707i)26-s + (−0.707 + 0.707i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.584 - 0.811i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.584 - 0.811i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.960942002\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.960942002\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
good | 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 13 | \( 1 + iT - T^{2} \) |
| 17 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 29 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 31 | \( 1 - iT - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + 1.41T + T^{2} \) |
| 43 | \( 1 + iT - T^{2} \) |
| 47 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 53 | \( 1 - 1.41iT - T^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 + (1 - i)T - iT^{2} \) |
| 67 | \( 1 + 2iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + T + T^{2} \) |
| 83 | \( 1 - 1.41iT - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-1 - i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.154028413843418373892626934308, −8.646691367825217732399887287720, −7.59671826868683794236910766877, −7.06118132599108263225895833294, −6.10055728291232742287314563741, −5.28538032218939531118593246962, −4.91329552612959679352130677452, −3.75139535317117595261612570909, −2.85830229168009217376887100185, −1.49683688304972513288255829459,
1.41097822543807620976198449082, 2.34840303986454687848843743689, 3.35839383917449221237263436594, 4.06782762135547836546210517358, 5.12733775927277385797823846845, 6.11291575861926805959168187419, 6.38984767765554831714236969744, 7.37359938631955290868199707454, 8.658507239135255416879567362128, 9.354013577683039362561979008138