Properties

Label 2-2175-1.1-c1-0-18
Degree $2$
Conductor $2175$
Sign $1$
Analytic cond. $17.3674$
Root an. cond. $4.16742$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.772·2-s + 3-s − 1.40·4-s − 0.772·6-s − 2.17·7-s + 2.62·8-s + 9-s + 3·11-s − 1.40·12-s + 0.629·13-s + 1.68·14-s + 0.772·16-s − 4.17·17-s − 0.772·18-s + 4.80·19-s − 2.17·21-s − 2.31·22-s − 2.08·23-s + 2.62·24-s − 0.486·26-s + 27-s + 3.05·28-s − 29-s − 5.85·32-s + 3·33-s + 3.22·34-s − 1.40·36-s + ⋯
L(s)  = 1  − 0.546·2-s + 0.577·3-s − 0.701·4-s − 0.315·6-s − 0.822·7-s + 0.929·8-s + 0.333·9-s + 0.904·11-s − 0.404·12-s + 0.174·13-s + 0.449·14-s + 0.193·16-s − 1.01·17-s − 0.182·18-s + 1.10·19-s − 0.474·21-s − 0.494·22-s − 0.434·23-s + 0.536·24-s − 0.0954·26-s + 0.192·27-s + 0.576·28-s − 0.185·29-s − 1.03·32-s + 0.522·33-s + 0.553·34-s − 0.233·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(17.3674\)
Root analytic conductor: \(4.16742\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.228875250\)
\(L(\frac12)\) \(\approx\) \(1.228875250\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
29 \( 1 + T \)
good2 \( 1 + 0.772T + 2T^{2} \)
7 \( 1 + 2.17T + 7T^{2} \)
11 \( 1 - 3T + 11T^{2} \)
13 \( 1 - 0.629T + 13T^{2} \)
17 \( 1 + 4.17T + 17T^{2} \)
19 \( 1 - 4.80T + 19T^{2} \)
23 \( 1 + 2.08T + 23T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 + 6.08T + 37T^{2} \)
41 \( 1 - 0.824T + 41T^{2} \)
43 \( 1 - 8.72T + 43T^{2} \)
47 \( 1 - 8.98T + 47T^{2} \)
53 \( 1 + 6.88T + 53T^{2} \)
59 \( 1 - 6.45T + 59T^{2} \)
61 \( 1 + 2.80T + 61T^{2} \)
67 \( 1 - 11.0T + 67T^{2} \)
71 \( 1 - 2.63T + 71T^{2} \)
73 \( 1 - 14.7T + 73T^{2} \)
79 \( 1 + 12.0T + 79T^{2} \)
83 \( 1 - 7.62T + 83T^{2} \)
89 \( 1 - 17.8T + 89T^{2} \)
97 \( 1 + 0.538T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.202958411969937398615047864104, −8.509088257781598297406213354273, −7.63948407361398088025771493507, −6.92096912349969274890568152242, −6.04789831851620209930441203112, −4.95121189473724260167217003058, −3.99969796799729332953802914103, −3.39693749655534156302946259097, −2.06537309341979483712572173237, −0.78318140584315882525102430039, 0.78318140584315882525102430039, 2.06537309341979483712572173237, 3.39693749655534156302946259097, 3.99969796799729332953802914103, 4.95121189473724260167217003058, 6.04789831851620209930441203112, 6.92096912349969274890568152242, 7.63948407361398088025771493507, 8.509088257781598297406213354273, 9.202958411969937398615047864104

Graph of the $Z$-function along the critical line