L(s) = 1 | − 0.772·2-s + 3-s − 1.40·4-s − 0.772·6-s − 2.17·7-s + 2.62·8-s + 9-s + 3·11-s − 1.40·12-s + 0.629·13-s + 1.68·14-s + 0.772·16-s − 4.17·17-s − 0.772·18-s + 4.80·19-s − 2.17·21-s − 2.31·22-s − 2.08·23-s + 2.62·24-s − 0.486·26-s + 27-s + 3.05·28-s − 29-s − 5.85·32-s + 3·33-s + 3.22·34-s − 1.40·36-s + ⋯ |
L(s) = 1 | − 0.546·2-s + 0.577·3-s − 0.701·4-s − 0.315·6-s − 0.822·7-s + 0.929·8-s + 0.333·9-s + 0.904·11-s − 0.404·12-s + 0.174·13-s + 0.449·14-s + 0.193·16-s − 1.01·17-s − 0.182·18-s + 1.10·19-s − 0.474·21-s − 0.494·22-s − 0.434·23-s + 0.536·24-s − 0.0954·26-s + 0.192·27-s + 0.576·28-s − 0.185·29-s − 1.03·32-s + 0.522·33-s + 0.553·34-s − 0.233·36-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2175s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.228875250 |
L(21) |
≈ |
1.228875250 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 5 | 1 |
| 29 | 1+T |
good | 2 | 1+0.772T+2T2 |
| 7 | 1+2.17T+7T2 |
| 11 | 1−3T+11T2 |
| 13 | 1−0.629T+13T2 |
| 17 | 1+4.17T+17T2 |
| 19 | 1−4.80T+19T2 |
| 23 | 1+2.08T+23T2 |
| 31 | 1+31T2 |
| 37 | 1+6.08T+37T2 |
| 41 | 1−0.824T+41T2 |
| 43 | 1−8.72T+43T2 |
| 47 | 1−8.98T+47T2 |
| 53 | 1+6.88T+53T2 |
| 59 | 1−6.45T+59T2 |
| 61 | 1+2.80T+61T2 |
| 67 | 1−11.0T+67T2 |
| 71 | 1−2.63T+71T2 |
| 73 | 1−14.7T+73T2 |
| 79 | 1+12.0T+79T2 |
| 83 | 1−7.62T+83T2 |
| 89 | 1−17.8T+89T2 |
| 97 | 1+0.538T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.202958411969937398615047864104, −8.509088257781598297406213354273, −7.63948407361398088025771493507, −6.92096912349969274890568152242, −6.04789831851620209930441203112, −4.95121189473724260167217003058, −3.99969796799729332953802914103, −3.39693749655534156302946259097, −2.06537309341979483712572173237, −0.78318140584315882525102430039,
0.78318140584315882525102430039, 2.06537309341979483712572173237, 3.39693749655534156302946259097, 3.99969796799729332953802914103, 4.95121189473724260167217003058, 6.04789831851620209930441203112, 6.92096912349969274890568152242, 7.63948407361398088025771493507, 8.509088257781598297406213354273, 9.202958411969937398615047864104