Properties

Label 2-2175-1.1-c1-0-25
Degree $2$
Conductor $2175$
Sign $1$
Analytic cond. $17.3674$
Root an. cond. $4.16742$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.66·2-s − 3-s + 5.09·4-s + 2.66·6-s + 0.0170·7-s − 8.24·8-s + 9-s + 1.70·11-s − 5.09·12-s + 4.69·13-s − 0.0453·14-s + 11.7·16-s + 3.91·17-s − 2.66·18-s + 6.02·19-s − 0.0170·21-s − 4.55·22-s − 4.82·23-s + 8.24·24-s − 12.5·26-s − 27-s + 0.0868·28-s − 29-s + 1.33·31-s − 14.8·32-s − 1.70·33-s − 10.4·34-s + ⋯
L(s)  = 1  − 1.88·2-s − 0.577·3-s + 2.54·4-s + 1.08·6-s + 0.00644·7-s − 2.91·8-s + 0.333·9-s + 0.515·11-s − 1.47·12-s + 1.30·13-s − 0.0121·14-s + 2.94·16-s + 0.949·17-s − 0.627·18-s + 1.38·19-s − 0.00371·21-s − 0.971·22-s − 1.00·23-s + 1.68·24-s − 2.45·26-s − 0.192·27-s + 0.0164·28-s − 0.185·29-s + 0.240·31-s − 2.62·32-s − 0.297·33-s − 1.78·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(17.3674\)
Root analytic conductor: \(4.16742\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7213963684\)
\(L(\frac12)\) \(\approx\) \(0.7213963684\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
29 \( 1 + T \)
good2 \( 1 + 2.66T + 2T^{2} \)
7 \( 1 - 0.0170T + 7T^{2} \)
11 \( 1 - 1.70T + 11T^{2} \)
13 \( 1 - 4.69T + 13T^{2} \)
17 \( 1 - 3.91T + 17T^{2} \)
19 \( 1 - 6.02T + 19T^{2} \)
23 \( 1 + 4.82T + 23T^{2} \)
31 \( 1 - 1.33T + 31T^{2} \)
37 \( 1 - 8.18T + 37T^{2} \)
41 \( 1 - 8.36T + 41T^{2} \)
43 \( 1 + 3.72T + 43T^{2} \)
47 \( 1 - 5.36T + 47T^{2} \)
53 \( 1 - 7.21T + 53T^{2} \)
59 \( 1 + 8.65T + 59T^{2} \)
61 \( 1 - 5.72T + 61T^{2} \)
67 \( 1 + 3.87T + 67T^{2} \)
71 \( 1 + 4.32T + 71T^{2} \)
73 \( 1 - 1.78T + 73T^{2} \)
79 \( 1 - 0.233T + 79T^{2} \)
83 \( 1 - 6.15T + 83T^{2} \)
89 \( 1 + 12.4T + 89T^{2} \)
97 \( 1 - 19.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.304905015397407057984508886823, −8.218152379239932118776538293800, −7.78918940137861932611097369539, −6.94241326170045472754322790506, −6.12937338899109650037635792537, −5.60728342299222017101273006059, −3.98402738369101836133915587932, −2.90763899115558260939117157652, −1.53708590639601758346834133363, −0.834733188292331876571569817971, 0.834733188292331876571569817971, 1.53708590639601758346834133363, 2.90763899115558260939117157652, 3.98402738369101836133915587932, 5.60728342299222017101273006059, 6.12937338899109650037635792537, 6.94241326170045472754322790506, 7.78918940137861932611097369539, 8.218152379239932118776538293800, 9.304905015397407057984508886823

Graph of the $Z$-function along the critical line