L(s) = 1 | − 2.66·2-s − 3-s + 5.09·4-s + 2.66·6-s + 0.0170·7-s − 8.24·8-s + 9-s + 1.70·11-s − 5.09·12-s + 4.69·13-s − 0.0453·14-s + 11.7·16-s + 3.91·17-s − 2.66·18-s + 6.02·19-s − 0.0170·21-s − 4.55·22-s − 4.82·23-s + 8.24·24-s − 12.5·26-s − 27-s + 0.0868·28-s − 29-s + 1.33·31-s − 14.8·32-s − 1.70·33-s − 10.4·34-s + ⋯ |
L(s) = 1 | − 1.88·2-s − 0.577·3-s + 2.54·4-s + 1.08·6-s + 0.00644·7-s − 2.91·8-s + 0.333·9-s + 0.515·11-s − 1.47·12-s + 1.30·13-s − 0.0121·14-s + 2.94·16-s + 0.949·17-s − 0.627·18-s + 1.38·19-s − 0.00371·21-s − 0.971·22-s − 1.00·23-s + 1.68·24-s − 2.45·26-s − 0.192·27-s + 0.0164·28-s − 0.185·29-s + 0.240·31-s − 2.62·32-s − 0.297·33-s − 1.78·34-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2175s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.7213963684 |
L(21) |
≈ |
0.7213963684 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 5 | 1 |
| 29 | 1+T |
good | 2 | 1+2.66T+2T2 |
| 7 | 1−0.0170T+7T2 |
| 11 | 1−1.70T+11T2 |
| 13 | 1−4.69T+13T2 |
| 17 | 1−3.91T+17T2 |
| 19 | 1−6.02T+19T2 |
| 23 | 1+4.82T+23T2 |
| 31 | 1−1.33T+31T2 |
| 37 | 1−8.18T+37T2 |
| 41 | 1−8.36T+41T2 |
| 43 | 1+3.72T+43T2 |
| 47 | 1−5.36T+47T2 |
| 53 | 1−7.21T+53T2 |
| 59 | 1+8.65T+59T2 |
| 61 | 1−5.72T+61T2 |
| 67 | 1+3.87T+67T2 |
| 71 | 1+4.32T+71T2 |
| 73 | 1−1.78T+73T2 |
| 79 | 1−0.233T+79T2 |
| 83 | 1−6.15T+83T2 |
| 89 | 1+12.4T+89T2 |
| 97 | 1−19.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.304905015397407057984508886823, −8.218152379239932118776538293800, −7.78918940137861932611097369539, −6.94241326170045472754322790506, −6.12937338899109650037635792537, −5.60728342299222017101273006059, −3.98402738369101836133915587932, −2.90763899115558260939117157652, −1.53708590639601758346834133363, −0.834733188292331876571569817971,
0.834733188292331876571569817971, 1.53708590639601758346834133363, 2.90763899115558260939117157652, 3.98402738369101836133915587932, 5.60728342299222017101273006059, 6.12937338899109650037635792537, 6.94241326170045472754322790506, 7.78918940137861932611097369539, 8.218152379239932118776538293800, 9.304905015397407057984508886823