L(s) = 1 | + (0.947 + 0.755i)2-s + (−0.118 − 0.518i)4-s + (3.15 + 1.52i)5-s + (1.53 − 2.15i)7-s + (1.33 − 2.76i)8-s + (1.84 + 3.82i)10-s + (−0.959 − 0.765i)11-s + (−4.81 − 3.84i)13-s + (3.08 − 0.883i)14-s + (2.39 − 1.15i)16-s + (−0.101 + 0.445i)17-s + 8.04i·19-s + (0.414 − 1.81i)20-s + (−0.330 − 1.44i)22-s + (−1.94 + 0.443i)23-s + ⋯ |
L(s) = 1 | + (0.669 + 0.534i)2-s + (−0.0591 − 0.259i)4-s + (1.41 + 0.679i)5-s + (0.579 − 0.814i)7-s + (0.470 − 0.977i)8-s + (0.582 + 1.20i)10-s + (−0.289 − 0.230i)11-s + (−1.33 − 1.06i)13-s + (0.823 − 0.236i)14-s + (0.597 − 0.287i)16-s + (−0.0246 + 0.107i)17-s + 1.84i·19-s + (0.0926 − 0.405i)20-s + (−0.0705 − 0.309i)22-s + (−0.405 + 0.0924i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 - 0.147i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.989 - 0.147i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.37226 + 0.175820i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.37226 + 0.175820i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-1.53 + 2.15i)T \) |
good | 2 | \( 1 + (-0.947 - 0.755i)T + (0.445 + 1.94i)T^{2} \) |
| 5 | \( 1 + (-3.15 - 1.52i)T + (3.11 + 3.90i)T^{2} \) |
| 11 | \( 1 + (0.959 + 0.765i)T + (2.44 + 10.7i)T^{2} \) |
| 13 | \( 1 + (4.81 + 3.84i)T + (2.89 + 12.6i)T^{2} \) |
| 17 | \( 1 + (0.101 - 0.445i)T + (-15.3 - 7.37i)T^{2} \) |
| 19 | \( 1 - 8.04iT - 19T^{2} \) |
| 23 | \( 1 + (1.94 - 0.443i)T + (20.7 - 9.97i)T^{2} \) |
| 29 | \( 1 + (-6.85 - 1.56i)T + (26.1 + 12.5i)T^{2} \) |
| 31 | \( 1 - 6.87iT - 31T^{2} \) |
| 37 | \( 1 + (-0.226 + 0.994i)T + (-33.3 - 16.0i)T^{2} \) |
| 41 | \( 1 + (-5.35 - 2.57i)T + (25.5 + 32.0i)T^{2} \) |
| 43 | \( 1 + (8.06 - 3.88i)T + (26.8 - 33.6i)T^{2} \) |
| 47 | \( 1 + (0.922 - 1.15i)T + (-10.4 - 45.8i)T^{2} \) |
| 53 | \( 1 + (7.14 - 1.63i)T + (47.7 - 22.9i)T^{2} \) |
| 59 | \( 1 + (-6.83 + 3.29i)T + (36.7 - 46.1i)T^{2} \) |
| 61 | \( 1 + (6.28 + 1.43i)T + (54.9 + 26.4i)T^{2} \) |
| 67 | \( 1 - 1.41T + 67T^{2} \) |
| 71 | \( 1 + (14.0 - 3.19i)T + (63.9 - 30.8i)T^{2} \) |
| 73 | \( 1 + (1.23 - 0.982i)T + (16.2 - 71.1i)T^{2} \) |
| 79 | \( 1 + 6.59T + 79T^{2} \) |
| 83 | \( 1 + (-3.24 - 4.06i)T + (-18.4 + 80.9i)T^{2} \) |
| 89 | \( 1 + (-8.27 - 10.3i)T + (-19.8 + 86.7i)T^{2} \) |
| 97 | \( 1 + 11.9iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.76670536653207425739239725382, −10.11957756218760366632647653600, −9.871884094109929366131330266244, −8.135120476151902385573713635183, −7.20872167140962084545756761872, −6.25646490869361571989711892453, −5.50205142352619327525164866695, −4.66258284039593084798600609682, −3.13572380418150596217536068699, −1.56216165859924007129657255100,
2.05778525611358083836189314747, 2.57124060802740261341072074975, 4.73089866805674626071080375052, 4.85733581064152628251577569715, 6.09538898538093573876877157623, 7.41301404096876747374322825824, 8.664207014755422645505094793775, 9.266774901895640367758611769140, 10.17996138590828738755365109004, 11.48600321105428064938197555771