L(s) = 1 | + (0.947 + 0.755i)2-s + (−0.118 − 0.518i)4-s + (3.15 + 1.52i)5-s + (1.53 − 2.15i)7-s + (1.33 − 2.76i)8-s + (1.84 + 3.82i)10-s + (−0.959 − 0.765i)11-s + (−4.81 − 3.84i)13-s + (3.08 − 0.883i)14-s + (2.39 − 1.15i)16-s + (−0.101 + 0.445i)17-s + 8.04i·19-s + (0.414 − 1.81i)20-s + (−0.330 − 1.44i)22-s + (−1.94 + 0.443i)23-s + ⋯ |
L(s) = 1 | + (0.669 + 0.534i)2-s + (−0.0591 − 0.259i)4-s + (1.41 + 0.679i)5-s + (0.579 − 0.814i)7-s + (0.470 − 0.977i)8-s + (0.582 + 1.20i)10-s + (−0.289 − 0.230i)11-s + (−1.33 − 1.06i)13-s + (0.823 − 0.236i)14-s + (0.597 − 0.287i)16-s + (−0.0246 + 0.107i)17-s + 1.84i·19-s + (0.0926 − 0.405i)20-s + (−0.0705 − 0.309i)22-s + (−0.405 + 0.0924i)23-s + ⋯ |
Λ(s)=(=(441s/2ΓC(s)L(s)(0.989−0.147i)Λ(2−s)
Λ(s)=(=(441s/2ΓC(s+1/2)L(s)(0.989−0.147i)Λ(1−s)
Degree: |
2 |
Conductor: |
441
= 32⋅72
|
Sign: |
0.989−0.147i
|
Analytic conductor: |
3.52140 |
Root analytic conductor: |
1.87654 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ441(251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 441, ( :1/2), 0.989−0.147i)
|
Particular Values
L(1) |
≈ |
2.37226+0.175820i |
L(21) |
≈ |
2.37226+0.175820i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−1.53+2.15i)T |
good | 2 | 1+(−0.947−0.755i)T+(0.445+1.94i)T2 |
| 5 | 1+(−3.15−1.52i)T+(3.11+3.90i)T2 |
| 11 | 1+(0.959+0.765i)T+(2.44+10.7i)T2 |
| 13 | 1+(4.81+3.84i)T+(2.89+12.6i)T2 |
| 17 | 1+(0.101−0.445i)T+(−15.3−7.37i)T2 |
| 19 | 1−8.04iT−19T2 |
| 23 | 1+(1.94−0.443i)T+(20.7−9.97i)T2 |
| 29 | 1+(−6.85−1.56i)T+(26.1+12.5i)T2 |
| 31 | 1−6.87iT−31T2 |
| 37 | 1+(−0.226+0.994i)T+(−33.3−16.0i)T2 |
| 41 | 1+(−5.35−2.57i)T+(25.5+32.0i)T2 |
| 43 | 1+(8.06−3.88i)T+(26.8−33.6i)T2 |
| 47 | 1+(0.922−1.15i)T+(−10.4−45.8i)T2 |
| 53 | 1+(7.14−1.63i)T+(47.7−22.9i)T2 |
| 59 | 1+(−6.83+3.29i)T+(36.7−46.1i)T2 |
| 61 | 1+(6.28+1.43i)T+(54.9+26.4i)T2 |
| 67 | 1−1.41T+67T2 |
| 71 | 1+(14.0−3.19i)T+(63.9−30.8i)T2 |
| 73 | 1+(1.23−0.982i)T+(16.2−71.1i)T2 |
| 79 | 1+6.59T+79T2 |
| 83 | 1+(−3.24−4.06i)T+(−18.4+80.9i)T2 |
| 89 | 1+(−8.27−10.3i)T+(−19.8+86.7i)T2 |
| 97 | 1+11.9iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.76670536653207425739239725382, −10.11957756218760366632647653600, −9.871884094109929366131330266244, −8.135120476151902385573713635183, −7.20872167140962084545756761872, −6.25646490869361571989711892453, −5.50205142352619327525164866695, −4.66258284039593084798600609682, −3.13572380418150596217536068699, −1.56216165859924007129657255100,
2.05778525611358083836189314747, 2.57124060802740261341072074975, 4.73089866805674626071080375052, 4.85733581064152628251577569715, 6.09538898538093573876877157623, 7.41301404096876747374322825824, 8.664207014755422645505094793775, 9.266774901895640367758611769140, 10.17996138590828738755365109004, 11.48600321105428064938197555771