Properties

Label 2-21e2-7.2-c1-0-2
Degree 22
Conductor 441441
Sign 0.9910.126i-0.991 - 0.126i
Analytic cond. 3.521403.52140
Root an. cond. 1.876541.87654
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.32 + 2.29i)2-s + (−2.5 − 4.33i)4-s + 7.93·8-s + (2.64 + 4.58i)11-s + (−5.49 + 9.52i)16-s − 14·22-s + (−2.64 + 4.58i)23-s + (2.5 + 4.33i)25-s − 10.5·29-s + (−6.61 − 11.4i)32-s + (−3 + 5.19i)37-s + 12·43-s + (13.2 − 22.9i)44-s + (−7 − 12.1i)46-s − 13.2·50-s + ⋯
L(s)  = 1  + (−0.935 + 1.62i)2-s + (−1.25 − 2.16i)4-s + 2.80·8-s + (0.797 + 1.38i)11-s + (−1.37 + 2.38i)16-s − 2.98·22-s + (−0.551 + 0.955i)23-s + (0.5 + 0.866i)25-s − 1.96·29-s + (−1.16 − 2.02i)32-s + (−0.493 + 0.854i)37-s + 1.82·43-s + (1.99 − 3.45i)44-s + (−1.03 − 1.78i)46-s − 1.87·50-s + ⋯

Functional equation

Λ(s)=(441s/2ΓC(s)L(s)=((0.9910.126i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(441s/2ΓC(s+1/2)L(s)=((0.9910.126i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 441441    =    32723^{2} \cdot 7^{2}
Sign: 0.9910.126i-0.991 - 0.126i
Analytic conductor: 3.521403.52140
Root analytic conductor: 1.876541.87654
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ441(226,)\chi_{441} (226, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 441, ( :1/2), 0.9910.126i)(2,\ 441,\ (\ :1/2),\ -0.991 - 0.126i)

Particular Values

L(1)L(1) \approx 0.0431640+0.680175i0.0431640 + 0.680175i
L(12)L(\frac12) \approx 0.0431640+0.680175i0.0431640 + 0.680175i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1 1
good2 1+(1.322.29i)T+(11.73i)T2 1 + (1.32 - 2.29i)T + (-1 - 1.73i)T^{2}
5 1+(2.54.33i)T2 1 + (-2.5 - 4.33i)T^{2}
11 1+(2.644.58i)T+(5.5+9.52i)T2 1 + (-2.64 - 4.58i)T + (-5.5 + 9.52i)T^{2}
13 1+13T2 1 + 13T^{2}
17 1+(8.5+14.7i)T2 1 + (-8.5 + 14.7i)T^{2}
19 1+(9.516.4i)T2 1 + (-9.5 - 16.4i)T^{2}
23 1+(2.644.58i)T+(11.519.9i)T2 1 + (2.64 - 4.58i)T + (-11.5 - 19.9i)T^{2}
29 1+10.5T+29T2 1 + 10.5T + 29T^{2}
31 1+(15.5+26.8i)T2 1 + (-15.5 + 26.8i)T^{2}
37 1+(35.19i)T+(18.532.0i)T2 1 + (3 - 5.19i)T + (-18.5 - 32.0i)T^{2}
41 1+41T2 1 + 41T^{2}
43 112T+43T2 1 - 12T + 43T^{2}
47 1+(23.540.7i)T2 1 + (-23.5 - 40.7i)T^{2}
53 1+(5.299.16i)T+(26.5+45.8i)T2 1 + (-5.29 - 9.16i)T + (-26.5 + 45.8i)T^{2}
59 1+(29.5+51.0i)T2 1 + (-29.5 + 51.0i)T^{2}
61 1+(30.552.8i)T2 1 + (-30.5 - 52.8i)T^{2}
67 1+(2+3.46i)T+(33.5+58.0i)T2 1 + (2 + 3.46i)T + (-33.5 + 58.0i)T^{2}
71 1+5.29T+71T2 1 + 5.29T + 71T^{2}
73 1+(36.5+63.2i)T2 1 + (-36.5 + 63.2i)T^{2}
79 1+(46.92i)T+(39.568.4i)T2 1 + (4 - 6.92i)T + (-39.5 - 68.4i)T^{2}
83 1+83T2 1 + 83T^{2}
89 1+(44.577.0i)T2 1 + (-44.5 - 77.0i)T^{2}
97 1+97T2 1 + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.30181091589250696727956659177, −10.16521409613907406703997374738, −9.412375924765196334903300457434, −8.892251051294420503655452830306, −7.53675227555732028248516407599, −7.26599583516057262854233745818, −6.15070334950467214322174731646, −5.25115218957661253206508273131, −4.10954644861899663574982754642, −1.57524628942162217482476555325, 0.62738357114098857897071554810, 2.14009531752356935003789463378, 3.38024253899097073966283710723, 4.23004013721510196810552384000, 5.92317704149626451149910777062, 7.37985377558115264145451324182, 8.516195764939302457246275916807, 8.943031227210958481236175773362, 9.911812943306868928725525944038, 10.82609173296786453330035239923

Graph of the ZZ-function along the critical line