Properties

Label 441.2.e.h
Level 441441
Weight 22
Character orbit 441.e
Analytic conductor 3.5213.521
Analytic rank 00
Dimension 44
CM discriminant -7
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,2,Mod(226,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.226");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 441=3272 441 = 3^{2} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 441.e (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.521402729143.52140272914
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(3,7)\Q(\sqrt{-3}, \sqrt{7})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+7x2+49 x^{4} + 7x^{2} + 49 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D3]\mathrm{U}(1)[D_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+5β2q4+3β3q8+(2β3+2β1)q11+(11β211)q1614q22+2β1q235β2q254β3q29+(5β35β1)q32++10β3q92+O(q100) q + \beta_1 q^{2} + 5 \beta_{2} q^{4} + 3 \beta_{3} q^{8} + (2 \beta_{3} + 2 \beta_1) q^{11} + ( - 11 \beta_{2} - 11) q^{16} - 14 q^{22} + 2 \beta_1 q^{23} - 5 \beta_{2} q^{25} - 4 \beta_{3} q^{29} + ( - 5 \beta_{3} - 5 \beta_1) q^{32}+ \cdots + 10 \beta_{3} q^{92}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q10q422q1656q22+10q2512q37+48q4328q46+56q58+52q648q6716q79+84q88+O(q100) 4 q - 10 q^{4} - 22 q^{16} - 56 q^{22} + 10 q^{25} - 12 q^{37} + 48 q^{43} - 28 q^{46} + 56 q^{58} + 52 q^{64} - 8 q^{67} - 16 q^{79} + 84 q^{88}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+7x2+49 x^{4} + 7x^{2} + 49 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/7 ( \nu^{2} ) / 7 Copy content Toggle raw display
β3\beta_{3}== (ν3)/7 ( \nu^{3} ) / 7 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 7β2 7\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 7β3 7\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/441Z)×\left(\mathbb{Z}/441\mathbb{Z}\right)^\times.

nn 199199 344344
χ(n)\chi(n) 1β2-1 - \beta_{2} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
226.1
−1.32288 + 2.29129i
1.32288 2.29129i
−1.32288 2.29129i
1.32288 + 2.29129i
−1.32288 + 2.29129i 0 −2.50000 4.33013i 0 0 0 7.93725 0 0
226.2 1.32288 2.29129i 0 −2.50000 4.33013i 0 0 0 −7.93725 0 0
361.1 −1.32288 2.29129i 0 −2.50000 + 4.33013i 0 0 0 7.93725 0 0
361.2 1.32288 + 2.29129i 0 −2.50000 + 4.33013i 0 0 0 −7.93725 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by Q(7)\Q(\sqrt{-7})
3.b odd 2 1 inner
7.c even 3 1 inner
7.d odd 6 1 inner
21.c even 2 1 inner
21.g even 6 1 inner
21.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 441.2.e.h 4
3.b odd 2 1 inner 441.2.e.h 4
7.b odd 2 1 CM 441.2.e.h 4
7.c even 3 1 441.2.a.h 2
7.c even 3 1 inner 441.2.e.h 4
7.d odd 6 1 441.2.a.h 2
7.d odd 6 1 inner 441.2.e.h 4
21.c even 2 1 inner 441.2.e.h 4
21.g even 6 1 441.2.a.h 2
21.g even 6 1 inner 441.2.e.h 4
21.h odd 6 1 441.2.a.h 2
21.h odd 6 1 inner 441.2.e.h 4
28.f even 6 1 7056.2.a.co 2
28.g odd 6 1 7056.2.a.co 2
84.j odd 6 1 7056.2.a.co 2
84.n even 6 1 7056.2.a.co 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
441.2.a.h 2 7.c even 3 1
441.2.a.h 2 7.d odd 6 1
441.2.a.h 2 21.g even 6 1
441.2.a.h 2 21.h odd 6 1
441.2.e.h 4 1.a even 1 1 trivial
441.2.e.h 4 3.b odd 2 1 inner
441.2.e.h 4 7.b odd 2 1 CM
441.2.e.h 4 7.c even 3 1 inner
441.2.e.h 4 7.d odd 6 1 inner
441.2.e.h 4 21.c even 2 1 inner
441.2.e.h 4 21.g even 6 1 inner
441.2.e.h 4 21.h odd 6 1 inner
7056.2.a.co 2 28.f even 6 1
7056.2.a.co 2 28.g odd 6 1
7056.2.a.co 2 84.j odd 6 1
7056.2.a.co 2 84.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(441,[χ])S_{2}^{\mathrm{new}}(441, [\chi]):

T24+7T22+49 T_{2}^{4} + 7T_{2}^{2} + 49 Copy content Toggle raw display
T5 T_{5} Copy content Toggle raw display
T13 T_{13} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+7T2+49 T^{4} + 7T^{2} + 49 Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4+28T2+784 T^{4} + 28T^{2} + 784 Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 T4+28T2+784 T^{4} + 28T^{2} + 784 Copy content Toggle raw display
2929 (T2112)2 (T^{2} - 112)^{2} Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 (T2+6T+36)2 (T^{2} + 6 T + 36)^{2} Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 (T12)4 (T - 12)^{4} Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 T4+112T2+12544 T^{4} + 112 T^{2} + 12544 Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 (T2+4T+16)2 (T^{2} + 4 T + 16)^{2} Copy content Toggle raw display
7171 (T228)2 (T^{2} - 28)^{2} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 (T2+8T+64)2 (T^{2} + 8 T + 64)^{2} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 T4 T^{4} Copy content Toggle raw display
show more
show less