L(s) = 1 | + (−1.32 − 2.29i)2-s + (−2.5 + 4.33i)4-s + 7.93·8-s + (2.64 − 4.58i)11-s + (−5.49 − 9.52i)16-s − 14·22-s + (−2.64 − 4.58i)23-s + (2.5 − 4.33i)25-s − 10.5·29-s + (−6.61 + 11.4i)32-s + (−3 − 5.19i)37-s + 12·43-s + (13.2 + 22.9i)44-s + (−7 + 12.1i)46-s − 13.2·50-s + ⋯ |
L(s) = 1 | + (−0.935 − 1.62i)2-s + (−1.25 + 2.16i)4-s + 2.80·8-s + (0.797 − 1.38i)11-s + (−1.37 − 2.38i)16-s − 2.98·22-s + (−0.551 − 0.955i)23-s + (0.5 − 0.866i)25-s − 1.96·29-s + (−1.16 + 2.02i)32-s + (−0.493 − 0.854i)37-s + 1.82·43-s + (1.99 + 3.45i)44-s + (−1.03 + 1.78i)46-s − 1.87·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 + 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.991 + 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0431640 - 0.680175i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0431640 - 0.680175i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (1.32 + 2.29i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.64 + 4.58i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 13T^{2} \) |
| 17 | \( 1 + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.64 + 4.58i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 10.5T + 29T^{2} \) |
| 31 | \( 1 + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (3 + 5.19i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 - 12T + 43T^{2} \) |
| 47 | \( 1 + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.29 + 9.16i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2 - 3.46i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 5.29T + 71T^{2} \) |
| 73 | \( 1 + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (4 + 6.92i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.82609173296786453330035239923, −9.911812943306868928725525944038, −8.943031227210958481236175773362, −8.516195764939302457246275916807, −7.37985377558115264145451324182, −5.92317704149626451149910777062, −4.23004013721510196810552384000, −3.38024253899097073966283710723, −2.14009531752356935003789463378, −0.62738357114098857897071554810,
1.57524628942162217482476555325, 4.10954644861899663574982754642, 5.25115218957661253206508273131, 6.15070334950467214322174731646, 7.26599583516057262854233745818, 7.53675227555732028248516407599, 8.892251051294420503655452830306, 9.412375924765196334903300457434, 10.16521409613907406703997374738, 11.30181091589250696727956659177