L(s) = 1 | + (4.71 − 3.42i)3-s + (0.690 + 2.12i)5-s + (−2.62 + 3.61i)7-s + (7.70 − 23.7i)9-s + (10.9 − 1.15i)11-s + (9.85 + 3.20i)13-s + (10.5 + 7.65i)15-s + (0.409 − 0.133i)17-s + (−15.0 − 20.6i)19-s + 26.0i·21-s − 21.0·23-s + (−4.04 + 2.93i)25-s + (−28.6 − 88.2i)27-s + (−31.7 + 43.7i)29-s + (−3.90 + 12.0i)31-s + ⋯ |
L(s) = 1 | + (1.57 − 1.14i)3-s + (0.138 + 0.425i)5-s + (−0.375 + 0.516i)7-s + (0.855 − 2.63i)9-s + (0.994 − 0.105i)11-s + (0.757 + 0.246i)13-s + (0.702 + 0.510i)15-s + (0.0241 − 0.00783i)17-s + (−0.790 − 1.08i)19-s + 1.24i·21-s − 0.915·23-s + (−0.161 + 0.117i)25-s + (−1.06 − 3.26i)27-s + (−1.09 + 1.50i)29-s + (−0.126 + 0.388i)31-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(0.653+0.757i)Λ(3−s)
Λ(s)=(=(220s/2ΓC(s+1)L(s)(0.653+0.757i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
0.653+0.757i
|
Analytic conductor: |
5.99456 |
Root analytic conductor: |
2.44838 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1), 0.653+0.757i)
|
Particular Values
L(23) |
≈ |
2.34571−1.07437i |
L(21) |
≈ |
2.34571−1.07437i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.690−2.12i)T |
| 11 | 1+(−10.9+1.15i)T |
good | 3 | 1+(−4.71+3.42i)T+(2.78−8.55i)T2 |
| 7 | 1+(2.62−3.61i)T+(−15.1−46.6i)T2 |
| 13 | 1+(−9.85−3.20i)T+(136.+99.3i)T2 |
| 17 | 1+(−0.409+0.133i)T+(233.−169.i)T2 |
| 19 | 1+(15.0+20.6i)T+(−111.+343.i)T2 |
| 23 | 1+21.0T+529T2 |
| 29 | 1+(31.7−43.7i)T+(−259.−799.i)T2 |
| 31 | 1+(3.90−12.0i)T+(−777.−564.i)T2 |
| 37 | 1+(3.37+2.45i)T+(423.+1.30e3i)T2 |
| 41 | 1+(−24.6−33.9i)T+(−519.+1.59e3i)T2 |
| 43 | 1−84.6iT−1.84e3T2 |
| 47 | 1+(−34.2+24.9i)T+(682.−2.10e3i)T2 |
| 53 | 1+(−13.5+41.8i)T+(−2.27e3−1.65e3i)T2 |
| 59 | 1+(53.6+38.9i)T+(1.07e3+3.31e3i)T2 |
| 61 | 1+(39.7−12.9i)T+(3.01e3−2.18e3i)T2 |
| 67 | 1−41.3T+4.48e3T2 |
| 71 | 1+(−1.24−3.84i)T+(−4.07e3+2.96e3i)T2 |
| 73 | 1+(−9.80+13.4i)T+(−1.64e3−5.06e3i)T2 |
| 79 | 1+(−49.2−15.9i)T+(5.04e3+3.66e3i)T2 |
| 83 | 1+(−60.4+19.6i)T+(5.57e3−4.04e3i)T2 |
| 89 | 1+30.4T+7.92e3T2 |
| 97 | 1+(52.9−163.i)T+(−7.61e3−5.53e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.26064765215225972403097834557, −11.09392587044250296080438151884, −9.426909680054938921268925226513, −8.988181385177101902636841138568, −8.002534042273057667805975089658, −6.84564717630924764202244128501, −6.25772485139886721749279125758, −3.86947417664274592853122111408, −2.81821486584447587077514974375, −1.57425100992281860418893236369,
2.04200917807691340003595277053, 3.80866903562551400872761308352, 4.08487932749044147863016583458, 5.85238784156827764058008380381, 7.54587049632882690213902995358, 8.467882360151508725264371433983, 9.252377502118124398257015151933, 10.01790776087061005413490089863, 10.82559724845409501878879305217, 12.35482935414957873774563604295