L(s) = 1 | + (4.71 + 3.42i)3-s + (0.690 − 2.12i)5-s + (−2.62 − 3.61i)7-s + (7.70 + 23.7i)9-s + (10.9 + 1.15i)11-s + (9.85 − 3.20i)13-s + (10.5 − 7.65i)15-s + (0.409 + 0.133i)17-s + (−15.0 + 20.6i)19-s − 26.0i·21-s − 21.0·23-s + (−4.04 − 2.93i)25-s + (−28.6 + 88.2i)27-s + (−31.7 − 43.7i)29-s + (−3.90 − 12.0i)31-s + ⋯ |
L(s) = 1 | + (1.57 + 1.14i)3-s + (0.138 − 0.425i)5-s + (−0.375 − 0.516i)7-s + (0.855 + 2.63i)9-s + (0.994 + 0.105i)11-s + (0.757 − 0.246i)13-s + (0.702 − 0.510i)15-s + (0.0241 + 0.00783i)17-s + (−0.790 + 1.08i)19-s − 1.24i·21-s − 0.915·23-s + (−0.161 − 0.117i)25-s + (−1.06 + 3.26i)27-s + (−1.09 − 1.50i)29-s + (−0.126 − 0.388i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.653 - 0.757i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.653 - 0.757i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.34571 + 1.07437i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.34571 + 1.07437i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.690 + 2.12i)T \) |
| 11 | \( 1 + (-10.9 - 1.15i)T \) |
good | 3 | \( 1 + (-4.71 - 3.42i)T + (2.78 + 8.55i)T^{2} \) |
| 7 | \( 1 + (2.62 + 3.61i)T + (-15.1 + 46.6i)T^{2} \) |
| 13 | \( 1 + (-9.85 + 3.20i)T + (136. - 99.3i)T^{2} \) |
| 17 | \( 1 + (-0.409 - 0.133i)T + (233. + 169. i)T^{2} \) |
| 19 | \( 1 + (15.0 - 20.6i)T + (-111. - 343. i)T^{2} \) |
| 23 | \( 1 + 21.0T + 529T^{2} \) |
| 29 | \( 1 + (31.7 + 43.7i)T + (-259. + 799. i)T^{2} \) |
| 31 | \( 1 + (3.90 + 12.0i)T + (-777. + 564. i)T^{2} \) |
| 37 | \( 1 + (3.37 - 2.45i)T + (423. - 1.30e3i)T^{2} \) |
| 41 | \( 1 + (-24.6 + 33.9i)T + (-519. - 1.59e3i)T^{2} \) |
| 43 | \( 1 + 84.6iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (-34.2 - 24.9i)T + (682. + 2.10e3i)T^{2} \) |
| 53 | \( 1 + (-13.5 - 41.8i)T + (-2.27e3 + 1.65e3i)T^{2} \) |
| 59 | \( 1 + (53.6 - 38.9i)T + (1.07e3 - 3.31e3i)T^{2} \) |
| 61 | \( 1 + (39.7 + 12.9i)T + (3.01e3 + 2.18e3i)T^{2} \) |
| 67 | \( 1 - 41.3T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-1.24 + 3.84i)T + (-4.07e3 - 2.96e3i)T^{2} \) |
| 73 | \( 1 + (-9.80 - 13.4i)T + (-1.64e3 + 5.06e3i)T^{2} \) |
| 79 | \( 1 + (-49.2 + 15.9i)T + (5.04e3 - 3.66e3i)T^{2} \) |
| 83 | \( 1 + (-60.4 - 19.6i)T + (5.57e3 + 4.04e3i)T^{2} \) |
| 89 | \( 1 + 30.4T + 7.92e3T^{2} \) |
| 97 | \( 1 + (52.9 + 163. i)T + (-7.61e3 + 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.35482935414957873774563604295, −10.82559724845409501878879305217, −10.01790776087061005413490089863, −9.252377502118124398257015151933, −8.467882360151508725264371433983, −7.54587049632882690213902995358, −5.85238784156827764058008380381, −4.08487932749044147863016583458, −3.80866903562551400872761308352, −2.04200917807691340003595277053,
1.57425100992281860418893236369, 2.81821486584447587077514974375, 3.86947417664274592853122111408, 6.25772485139886721749279125758, 6.84564717630924764202244128501, 8.002534042273057667805975089658, 8.988181385177101902636841138568, 9.426909680054938921268925226513, 11.09392587044250296080438151884, 12.26064765215225972403097834557