L(s) = 1 | + 1.73i·3-s − i·5-s − 7-s − 1.99·9-s − i·11-s − i·13-s + 1.73·15-s − 1.73·17-s − 1.73i·21-s − 25-s − 1.73i·27-s − 1.73i·29-s + 1.73·33-s + i·35-s + 1.73·39-s + ⋯ |
L(s) = 1 | + 1.73i·3-s − i·5-s − 7-s − 1.99·9-s − i·11-s − i·13-s + 1.73·15-s − 1.73·17-s − 1.73i·21-s − 25-s − 1.73i·27-s − 1.73i·29-s + 1.73·33-s + i·35-s + 1.73·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.258 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.258 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4873949385\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4873949385\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 7 | \( 1 + T \) |
good | 3 | \( 1 - 1.73iT - T^{2} \) |
| 11 | \( 1 + iT - T^{2} \) |
| 13 | \( 1 + iT - T^{2} \) |
| 17 | \( 1 + 1.73T + T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + 1.73iT - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + T + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + 1.73T + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - 1.73T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.996296567814500332823160041875, −8.728261001066961559280491741608, −7.84255267468644537602463459269, −6.33964658938566057641234344380, −5.78485833738005751224287080363, −4.94617531358602030327628906473, −4.20238668693489551237951595240, −3.50989590661150073897940972887, −2.57777634615938663534330396823, −0.31024107971170636968755282649,
1.74609745618083056380768413951, 2.40033494539655666440454706602, 3.33178308771758188666261494745, 4.55538815216758117670035557946, 5.92053155975828033261153612143, 6.67442554826816721663465208511, 6.91075002209753406866659732517, 7.42391635808013777773746707013, 8.564647369609327433872337119672, 9.226163090075877818749898909478