L(s) = 1 | + 1.11·5-s + 7-s + 1.88·11-s − 13-s + 5.87·17-s + 7.09·19-s − 3.98·23-s − 3.76·25-s − 0.987·29-s − 0.666·31-s + 1.11·35-s − 1.33·37-s + 1.88·41-s − 10.8·43-s + 11.0·47-s + 49-s + 12.2·53-s + 2.09·55-s − 4.76·59-s + 3.76·61-s − 1.11·65-s + 4.09·67-s + 10.7·71-s − 3.09·73-s + 1.88·77-s + 6.43·79-s + 11.8·83-s + ⋯ |
L(s) = 1 | + 0.496·5-s + 0.377·7-s + 0.569·11-s − 0.277·13-s + 1.42·17-s + 1.62·19-s − 0.831·23-s − 0.753·25-s − 0.183·29-s − 0.119·31-s + 0.187·35-s − 0.219·37-s + 0.294·41-s − 1.65·43-s + 1.61·47-s + 0.142·49-s + 1.67·53-s + 0.283·55-s − 0.620·59-s + 0.482·61-s − 0.137·65-s + 0.500·67-s + 1.27·71-s − 0.362·73-s + 0.215·77-s + 0.723·79-s + 1.30·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.253413794\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.253413794\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 - T \) |
good | 5 | \( 1 - 1.11T + 5T^{2} \) |
| 11 | \( 1 - 1.88T + 11T^{2} \) |
| 13 | \( 1 + T + 13T^{2} \) |
| 17 | \( 1 - 5.87T + 17T^{2} \) |
| 19 | \( 1 - 7.09T + 19T^{2} \) |
| 23 | \( 1 + 3.98T + 23T^{2} \) |
| 29 | \( 1 + 0.987T + 29T^{2} \) |
| 31 | \( 1 + 0.666T + 31T^{2} \) |
| 37 | \( 1 + 1.33T + 37T^{2} \) |
| 41 | \( 1 - 1.88T + 41T^{2} \) |
| 43 | \( 1 + 10.8T + 43T^{2} \) |
| 47 | \( 1 - 11.0T + 47T^{2} \) |
| 53 | \( 1 - 12.2T + 53T^{2} \) |
| 59 | \( 1 + 4.76T + 59T^{2} \) |
| 61 | \( 1 - 3.76T + 61T^{2} \) |
| 67 | \( 1 - 4.09T + 67T^{2} \) |
| 71 | \( 1 - 10.7T + 71T^{2} \) |
| 73 | \( 1 + 3.09T + 73T^{2} \) |
| 79 | \( 1 - 6.43T + 79T^{2} \) |
| 83 | \( 1 - 11.8T + 83T^{2} \) |
| 89 | \( 1 + 14.3T + 89T^{2} \) |
| 97 | \( 1 - 0.765T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.170253474368430120861992693460, −8.137358786635108106077005880484, −7.55990863272468300779993836038, −6.73661088880707328437725493218, −5.62765808299818400022755349188, −5.35072332053585461880387847954, −4.08227221565028679776404096391, −3.27460322272164033596761099256, −2.07474786433568748434270171766, −1.04483332189833138687378324111,
1.04483332189833138687378324111, 2.07474786433568748434270171766, 3.27460322272164033596761099256, 4.08227221565028679776404096391, 5.35072332053585461880387847954, 5.62765808299818400022755349188, 6.73661088880707328437725493218, 7.55990863272468300779993836038, 8.137358786635108106077005880484, 9.170253474368430120861992693460