L(s) = 1 | + 1.11·5-s + 7-s + 1.88·11-s − 13-s + 5.87·17-s + 7.09·19-s − 3.98·23-s − 3.76·25-s − 0.987·29-s − 0.666·31-s + 1.11·35-s − 1.33·37-s + 1.88·41-s − 10.8·43-s + 11.0·47-s + 49-s + 12.2·53-s + 2.09·55-s − 4.76·59-s + 3.76·61-s − 1.11·65-s + 4.09·67-s + 10.7·71-s − 3.09·73-s + 1.88·77-s + 6.43·79-s + 11.8·83-s + ⋯ |
L(s) = 1 | + 0.496·5-s + 0.377·7-s + 0.569·11-s − 0.277·13-s + 1.42·17-s + 1.62·19-s − 0.831·23-s − 0.753·25-s − 0.183·29-s − 0.119·31-s + 0.187·35-s − 0.219·37-s + 0.294·41-s − 1.65·43-s + 1.61·47-s + 0.142·49-s + 1.67·53-s + 0.283·55-s − 0.620·59-s + 0.482·61-s − 0.137·65-s + 0.500·67-s + 1.27·71-s − 0.362·73-s + 0.215·77-s + 0.723·79-s + 1.30·83-s + ⋯ |
Λ(s)=(=(2268s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2268s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.253413794 |
L(21) |
≈ |
2.253413794 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1−T |
good | 5 | 1−1.11T+5T2 |
| 11 | 1−1.88T+11T2 |
| 13 | 1+T+13T2 |
| 17 | 1−5.87T+17T2 |
| 19 | 1−7.09T+19T2 |
| 23 | 1+3.98T+23T2 |
| 29 | 1+0.987T+29T2 |
| 31 | 1+0.666T+31T2 |
| 37 | 1+1.33T+37T2 |
| 41 | 1−1.88T+41T2 |
| 43 | 1+10.8T+43T2 |
| 47 | 1−11.0T+47T2 |
| 53 | 1−12.2T+53T2 |
| 59 | 1+4.76T+59T2 |
| 61 | 1−3.76T+61T2 |
| 67 | 1−4.09T+67T2 |
| 71 | 1−10.7T+71T2 |
| 73 | 1+3.09T+73T2 |
| 79 | 1−6.43T+79T2 |
| 83 | 1−11.8T+83T2 |
| 89 | 1+14.3T+89T2 |
| 97 | 1−0.765T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.170253474368430120861992693460, −8.137358786635108106077005880484, −7.55990863272468300779993836038, −6.73661088880707328437725493218, −5.62765808299818400022755349188, −5.35072332053585461880387847954, −4.08227221565028679776404096391, −3.27460322272164033596761099256, −2.07474786433568748434270171766, −1.04483332189833138687378324111,
1.04483332189833138687378324111, 2.07474786433568748434270171766, 3.27460322272164033596761099256, 4.08227221565028679776404096391, 5.35072332053585461880387847954, 5.62765808299818400022755349188, 6.73661088880707328437725493218, 7.55990863272468300779993836038, 8.137358786635108106077005880484, 9.170253474368430120861992693460