L(s) = 1 | + (0.705 − 1.22i)5-s + (−0.779 + 2.52i)7-s + (2.48 + 4.30i)11-s + (1.48 + 2.57i)13-s + (−1.29 + 2.25i)17-s + (−3.76 − 6.52i)19-s + (−4.06 + 7.03i)23-s + (1.50 + 2.60i)25-s + (3.46 − 6.00i)29-s − 10.5·31-s + (2.53 + 2.73i)35-s + (−0.0945 − 0.163i)37-s + (−1.02 − 1.76i)41-s + (2.19 − 3.79i)43-s − 9.38·47-s + ⋯ |
L(s) = 1 | + (0.315 − 0.546i)5-s + (−0.294 + 0.955i)7-s + (0.749 + 1.29i)11-s + (0.411 + 0.713i)13-s + (−0.315 + 0.546i)17-s + (−0.863 − 1.49i)19-s + (−0.847 + 1.46i)23-s + (0.301 + 0.521i)25-s + (0.644 − 1.11i)29-s − 1.89·31-s + (0.429 + 0.462i)35-s + (−0.0155 − 0.0269i)37-s + (−0.159 − 0.275i)41-s + (0.333 − 0.578i)43-s − 1.36·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.488 - 0.872i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.488 - 0.872i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.205911444\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.205911444\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.779 - 2.52i)T \) |
good | 5 | \( 1 + (-0.705 + 1.22i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.48 - 4.30i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.48 - 2.57i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (1.29 - 2.25i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.76 + 6.52i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (4.06 - 7.03i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.46 + 6.00i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 10.5T + 31T^{2} \) |
| 37 | \( 1 + (0.0945 + 0.163i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.02 + 1.76i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.19 + 3.79i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 9.38T + 47T^{2} \) |
| 53 | \( 1 + (6.95 - 12.0i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 6.78T + 59T^{2} \) |
| 61 | \( 1 - 5.89T + 61T^{2} \) |
| 67 | \( 1 - 10.0T + 67T^{2} \) |
| 71 | \( 1 + 7.86T + 71T^{2} \) |
| 73 | \( 1 + (-0.894 + 1.54i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 - 1.70T + 79T^{2} \) |
| 83 | \( 1 + (-0.0100 + 0.0174i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-7.33 - 12.7i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (4.33 - 7.51i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.254477503216846982105001721967, −8.816334592611317230647222742353, −7.75053246752463861015336124232, −6.81328407108746723706772200901, −6.22085789635948854010690967200, −5.30718078159830174705586273512, −4.50086402004293845477996495793, −3.67157241957804061921286432986, −2.24516427811096969173137832563, −1.63662360398118389407164648494,
0.39558309786492176854913937116, 1.72873802673884588296761697264, 3.13308234387541906910515806860, 3.66779338121098609451027578667, 4.65604152420262771015632849272, 5.92486065078335042055497028813, 6.37017413066600128672465411450, 7.05447155684789123043773358350, 8.205038798621355963126572348527, 8.541186085507350252450927292138