Properties

Label 2268.2.i.l.865.3
Level $2268$
Weight $2$
Character 2268.865
Analytic conductor $18.110$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2268,2,Mod(865,2268)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2268, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2268.865");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.310217769.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 4x^{6} - 2x^{5} + 15x^{4} - 4x^{3} + 5x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 865.3
Root \(-0.198169 + 0.343239i\) of defining polynomial
Character \(\chi\) \(=\) 2268.865
Dual form 2268.2.i.l.2053.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.705299 - 1.22161i) q^{5} +(-0.779537 + 2.52830i) q^{7} +O(q^{10})\) \(q+(0.705299 - 1.22161i) q^{5} +(-0.779537 + 2.52830i) q^{7} +(2.48484 + 4.30386i) q^{11} +(1.48484 + 2.57181i) q^{13} +(-1.29981 + 2.25133i) q^{17} +(-3.76437 - 6.52009i) q^{19} +(-4.06418 + 7.03937i) q^{23} +(1.50511 + 2.60692i) q^{25} +(3.46967 - 6.00965i) q^{29} -10.5390 q^{31} +(2.53880 + 2.73550i) q^{35} +(-0.0945078 - 0.163692i) q^{37} +(-1.02027 - 1.76716i) q^{41} +(2.19014 - 3.79343i) q^{43} -9.38027 q^{47} +(-5.78464 - 3.94181i) q^{49} +(-6.95339 + 12.0436i) q^{53} +7.01021 q^{55} -6.78863 q^{59} +5.89657 q^{61} +4.18902 q^{65} +10.0125 q^{67} -7.86174 q^{71} +(0.894315 - 1.54900i) q^{73} +(-12.8185 + 2.92740i) q^{77} +1.70755 q^{79} +(0.0100574 - 0.0174200i) q^{83} +(1.83351 + 3.17572i) q^{85} +(7.33366 + 12.7023i) q^{89} +(-7.65981 + 1.74929i) q^{91} -10.6200 q^{95} +(-4.33636 + 7.51080i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{5} + q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{5} + q^{7} + 5 q^{11} - 3 q^{13} + 2 q^{17} - 8 q^{19} + 2 q^{23} - 8 q^{25} - 2 q^{29} + 11 q^{35} + 4 q^{37} - 3 q^{41} - 5 q^{43} - 30 q^{47} - 19 q^{49} - 24 q^{53} + 16 q^{55} - 20 q^{59} + 24 q^{61} + 24 q^{65} + 14 q^{67} - 22 q^{71} - 10 q^{73} - 11 q^{77} + 35 q^{83} + 13 q^{85} - 18 q^{89} - 9 q^{91} + 20 q^{95} - 19 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.705299 1.22161i 0.315419 0.546322i −0.664107 0.747637i \(-0.731188\pi\)
0.979527 + 0.201315i \(0.0645215\pi\)
\(6\) 0 0
\(7\) −0.779537 + 2.52830i −0.294637 + 0.955609i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.48484 + 4.30386i 0.749206 + 1.29766i 0.948204 + 0.317663i \(0.102898\pi\)
−0.198997 + 0.980000i \(0.563768\pi\)
\(12\) 0 0
\(13\) 1.48484 + 2.57181i 0.411820 + 0.713292i 0.995089 0.0989865i \(-0.0315601\pi\)
−0.583269 + 0.812279i \(0.698227\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.29981 + 2.25133i −0.315249 + 0.546028i −0.979491 0.201490i \(-0.935422\pi\)
0.664241 + 0.747518i \(0.268755\pi\)
\(18\) 0 0
\(19\) −3.76437 6.52009i −0.863607 1.49581i −0.868424 0.495822i \(-0.834867\pi\)
0.00481762 0.999988i \(-0.498466\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.06418 + 7.03937i −0.847440 + 1.46781i 0.0360448 + 0.999350i \(0.488524\pi\)
−0.883485 + 0.468459i \(0.844809\pi\)
\(24\) 0 0
\(25\) 1.50511 + 2.60692i 0.301021 + 0.521384i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.46967 6.00965i 0.644302 1.11596i −0.340160 0.940368i \(-0.610481\pi\)
0.984462 0.175596i \(-0.0561854\pi\)
\(30\) 0 0
\(31\) −10.5390 −1.89285 −0.946427 0.322919i \(-0.895336\pi\)
−0.946427 + 0.322919i \(0.895336\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.53880 + 2.73550i 0.429136 + 0.462385i
\(36\) 0 0
\(37\) −0.0945078 0.163692i −0.0155370 0.0269108i 0.858152 0.513395i \(-0.171612\pi\)
−0.873689 + 0.486484i \(0.838279\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.02027 1.76716i −0.159339 0.275984i 0.775291 0.631604i \(-0.217603\pi\)
−0.934631 + 0.355620i \(0.884270\pi\)
\(42\) 0 0
\(43\) 2.19014 3.79343i 0.333993 0.578492i −0.649298 0.760534i \(-0.724937\pi\)
0.983291 + 0.182042i \(0.0582706\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −9.38027 −1.36825 −0.684127 0.729363i \(-0.739816\pi\)
−0.684127 + 0.729363i \(0.739816\pi\)
\(48\) 0 0
\(49\) −5.78464 3.94181i −0.826378 0.563116i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.95339 + 12.0436i −0.955121 + 1.65432i −0.221032 + 0.975267i \(0.570942\pi\)
−0.734090 + 0.679052i \(0.762391\pi\)
\(54\) 0 0
\(55\) 7.01021 0.945257
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.78863 −0.883804 −0.441902 0.897063i \(-0.645696\pi\)
−0.441902 + 0.897063i \(0.645696\pi\)
\(60\) 0 0
\(61\) 5.89657 0.754978 0.377489 0.926014i \(-0.376788\pi\)
0.377489 + 0.926014i \(0.376788\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.18902 0.519583
\(66\) 0 0
\(67\) 10.0125 1.22322 0.611608 0.791161i \(-0.290523\pi\)
0.611608 + 0.791161i \(0.290523\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7.86174 −0.933016 −0.466508 0.884517i \(-0.654488\pi\)
−0.466508 + 0.884517i \(0.654488\pi\)
\(72\) 0 0
\(73\) 0.894315 1.54900i 0.104672 0.181297i −0.808932 0.587902i \(-0.799954\pi\)
0.913604 + 0.406605i \(0.133288\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −12.8185 + 2.92740i −1.46080 + 0.333608i
\(78\) 0 0
\(79\) 1.70755 0.192114 0.0960572 0.995376i \(-0.469377\pi\)
0.0960572 + 0.995376i \(0.469377\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.0100574 0.0174200i 0.00110395 0.00191209i −0.865473 0.500956i \(-0.832982\pi\)
0.866577 + 0.499044i \(0.166315\pi\)
\(84\) 0 0
\(85\) 1.83351 + 3.17572i 0.198872 + 0.344456i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.33366 + 12.7023i 0.777366 + 1.34644i 0.933455 + 0.358695i \(0.116778\pi\)
−0.156088 + 0.987743i \(0.549888\pi\)
\(90\) 0 0
\(91\) −7.65981 + 1.74929i −0.802966 + 0.183376i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −10.6200 −1.08959
\(96\) 0 0
\(97\) −4.33636 + 7.51080i −0.440291 + 0.762606i −0.997711 0.0676247i \(-0.978458\pi\)
0.557420 + 0.830231i \(0.311791\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.56418 + 9.63744i 0.553657 + 0.958961i 0.998007 + 0.0631082i \(0.0201013\pi\)
−0.444350 + 0.895853i \(0.646565\pi\)
\(102\) 0 0
\(103\) −5.40054 + 9.35401i −0.532131 + 0.921678i 0.467165 + 0.884170i \(0.345275\pi\)
−0.999296 + 0.0375081i \(0.988058\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.21776 + 14.2336i 0.794441 + 1.37601i 0.923193 + 0.384336i \(0.125569\pi\)
−0.128752 + 0.991677i \(0.541097\pi\)
\(108\) 0 0
\(109\) 5.77459 10.0019i 0.553105 0.958006i −0.444943 0.895559i \(-0.646776\pi\)
0.998048 0.0624472i \(-0.0198905\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.590522 + 1.02281i 0.0555516 + 0.0962182i 0.892464 0.451119i \(-0.148975\pi\)
−0.836912 + 0.547337i \(0.815642\pi\)
\(114\) 0 0
\(115\) 5.73293 + 9.92972i 0.534598 + 0.925951i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.67880 5.04130i −0.428905 0.462136i
\(120\) 0 0
\(121\) −6.84882 + 11.8625i −0.622620 + 1.07841i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.2992 1.01063
\(126\) 0 0
\(127\) 9.16890 0.813608 0.406804 0.913515i \(-0.366643\pi\)
0.406804 + 0.913515i \(0.366643\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.84260 + 6.65557i −0.335729 + 0.581500i −0.983625 0.180229i \(-0.942316\pi\)
0.647895 + 0.761729i \(0.275649\pi\)
\(132\) 0 0
\(133\) 19.4192 4.43483i 1.68386 0.384549i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.38696 + 4.13433i 0.203932 + 0.353220i 0.949792 0.312883i \(-0.101295\pi\)
−0.745860 + 0.666102i \(0.767961\pi\)
\(138\) 0 0
\(139\) −10.4382 18.0795i −0.885359 1.53349i −0.845302 0.534289i \(-0.820579\pi\)
−0.0400568 0.999197i \(-0.512754\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −7.37915 + 12.7811i −0.617076 + 1.06881i
\(144\) 0 0
\(145\) −4.89431 8.47720i −0.406451 0.703993i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.90054 10.2200i 0.483391 0.837258i −0.516427 0.856331i \(-0.672738\pi\)
0.999818 + 0.0190732i \(0.00607156\pi\)
\(150\) 0 0
\(151\) 3.51133 + 6.08181i 0.285748 + 0.494930i 0.972790 0.231687i \(-0.0744246\pi\)
−0.687042 + 0.726618i \(0.741091\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −7.43312 + 12.8745i −0.597043 + 1.03411i
\(156\) 0 0
\(157\) 6.67722 0.532900 0.266450 0.963849i \(-0.414149\pi\)
0.266450 + 0.963849i \(0.414149\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −14.6295 15.7629i −1.15296 1.24229i
\(162\) 0 0
\(163\) −0.169866 0.294216i −0.0133049 0.0230448i 0.859296 0.511478i \(-0.170902\pi\)
−0.872601 + 0.488433i \(0.837569\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.448283 + 0.776449i 0.0346892 + 0.0600834i 0.882849 0.469657i \(-0.155623\pi\)
−0.848160 + 0.529741i \(0.822289\pi\)
\(168\) 0 0
\(169\) 2.09052 3.62089i 0.160809 0.278530i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.83591 0.367668 0.183834 0.982957i \(-0.441149\pi\)
0.183834 + 0.982957i \(0.441149\pi\)
\(174\) 0 0
\(175\) −7.76437 + 1.77317i −0.586931 + 0.134039i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.42464 + 2.46755i −0.106483 + 0.184434i −0.914343 0.404941i \(-0.867292\pi\)
0.807860 + 0.589374i \(0.200626\pi\)
\(180\) 0 0
\(181\) 1.46104 0.108598 0.0542991 0.998525i \(-0.482708\pi\)
0.0542991 + 0.998525i \(0.482708\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.266625 −0.0196027
\(186\) 0 0
\(187\) −12.9192 −0.944748
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.58143 0.331501 0.165750 0.986168i \(-0.446995\pi\)
0.165750 + 0.986168i \(0.446995\pi\)
\(192\) 0 0
\(193\) −13.5840 −0.977798 −0.488899 0.872340i \(-0.662601\pi\)
−0.488899 + 0.872340i \(0.662601\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −13.3905 −0.954032 −0.477016 0.878894i \(-0.658282\pi\)
−0.477016 + 0.878894i \(0.658282\pi\)
\(198\) 0 0
\(199\) 0.385222 0.667225i 0.0273077 0.0472983i −0.852049 0.523463i \(-0.824640\pi\)
0.879356 + 0.476164i \(0.157973\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 12.4895 + 13.4571i 0.876590 + 0.944506i
\(204\) 0 0
\(205\) −2.87838 −0.201035
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 18.7077 32.4027i 1.29404 2.24134i
\(210\) 0 0
\(211\) −2.28576 3.95906i −0.157358 0.272553i 0.776557 0.630047i \(-0.216964\pi\)
−0.933915 + 0.357494i \(0.883631\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.08940 5.35100i −0.210695 0.364935i
\(216\) 0 0
\(217\) 8.21551 26.6457i 0.557705 1.80883i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −7.72000 −0.519304
\(222\) 0 0
\(223\) −5.78352 + 10.0174i −0.387293 + 0.670812i −0.992084 0.125572i \(-0.959923\pi\)
0.604791 + 0.796384i \(0.293257\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.90054 5.02388i −0.192516 0.333447i 0.753568 0.657370i \(-0.228331\pi\)
−0.946083 + 0.323923i \(0.894998\pi\)
\(228\) 0 0
\(229\) −6.43087 + 11.1386i −0.424964 + 0.736059i −0.996417 0.0845758i \(-0.973046\pi\)
0.571453 + 0.820635i \(0.306380\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.33636 + 10.9749i 0.415109 + 0.718989i 0.995440 0.0953912i \(-0.0304102\pi\)
−0.580331 + 0.814381i \(0.697077\pi\)
\(234\) 0 0
\(235\) −6.61590 + 11.4591i −0.431574 + 0.747507i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.14352 + 7.17680i 0.268022 + 0.464228i 0.968351 0.249592i \(-0.0802966\pi\)
−0.700329 + 0.713821i \(0.746963\pi\)
\(240\) 0 0
\(241\) −8.50848 14.7371i −0.548079 0.949301i −0.998406 0.0564373i \(-0.982026\pi\)
0.450327 0.892864i \(-0.351307\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −8.89528 + 4.28644i −0.568299 + 0.273851i
\(246\) 0 0
\(247\) 11.1790 19.3625i 0.711300 1.23201i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 13.3228 0.840926 0.420463 0.907310i \(-0.361868\pi\)
0.420463 + 0.907310i \(0.361868\pi\)
\(252\) 0 0
\(253\) −40.3953 −2.53963
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −0.196207 + 0.339840i −0.0122390 + 0.0211987i −0.872080 0.489363i \(-0.837229\pi\)
0.859841 + 0.510562i \(0.170563\pi\)
\(258\) 0 0
\(259\) 0.487536 0.111340i 0.0302940 0.00691834i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.4342 + 21.5367i 0.766728 + 1.32801i 0.939328 + 0.343020i \(0.111450\pi\)
−0.172600 + 0.984992i \(0.555217\pi\)
\(264\) 0 0
\(265\) 9.80844 + 16.9887i 0.602528 + 1.04361i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.60073 + 2.77255i −0.0975985 + 0.169046i −0.910690 0.413090i \(-0.864449\pi\)
0.813092 + 0.582136i \(0.197783\pi\)
\(270\) 0 0
\(271\) 12.2443 + 21.2077i 0.743786 + 1.28827i 0.950760 + 0.309928i \(0.100305\pi\)
−0.206974 + 0.978346i \(0.566362\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.47989 + 12.9555i −0.451054 + 0.781249i
\(276\) 0 0
\(277\) −4.42576 7.66564i −0.265918 0.460584i 0.701886 0.712290i \(-0.252342\pi\)
−0.967804 + 0.251706i \(0.919008\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −8.47079 + 14.6718i −0.505325 + 0.875249i 0.494656 + 0.869089i \(0.335294\pi\)
−0.999981 + 0.00615989i \(0.998039\pi\)
\(282\) 0 0
\(283\) 14.5390 0.864251 0.432126 0.901813i \(-0.357764\pi\)
0.432126 + 0.901813i \(0.357764\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.26325 1.20199i 0.310680 0.0709510i
\(288\) 0 0
\(289\) 5.12100 + 8.86984i 0.301236 + 0.521755i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −12.9619 22.4506i −0.757240 1.31158i −0.944253 0.329221i \(-0.893214\pi\)
0.187012 0.982358i \(-0.440120\pi\)
\(294\) 0 0
\(295\) −4.78801 + 8.29308i −0.278769 + 0.482842i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −24.1386 −1.39597
\(300\) 0 0
\(301\) 7.88364 + 8.49445i 0.454406 + 0.489612i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.15884 7.20333i 0.238135 0.412461i
\(306\) 0 0
\(307\) 13.1204 0.748820 0.374410 0.927263i \(-0.377845\pi\)
0.374410 + 0.927263i \(0.377845\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.30490 −0.470928 −0.235464 0.971883i \(-0.575661\pi\)
−0.235464 + 0.971883i \(0.575661\pi\)
\(312\) 0 0
\(313\) 23.1587 1.30901 0.654503 0.756059i \(-0.272878\pi\)
0.654503 + 0.756059i \(0.272878\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.7155 0.658009 0.329005 0.944328i \(-0.393287\pi\)
0.329005 + 0.944328i \(0.393287\pi\)
\(318\) 0 0
\(319\) 34.4863 1.93086
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 19.5718 1.08901
\(324\) 0 0
\(325\) −4.46967 + 7.74170i −0.247933 + 0.429432i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 7.31227 23.7162i 0.403139 1.30752i
\(330\) 0 0
\(331\) −16.5019 −0.907026 −0.453513 0.891250i \(-0.649829\pi\)
−0.453513 + 0.891250i \(0.649829\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.06177 12.2314i 0.385826 0.668270i
\(336\) 0 0
\(337\) −8.97815 15.5506i −0.489071 0.847096i 0.510850 0.859670i \(-0.329331\pi\)
−0.999921 + 0.0125741i \(0.995997\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −26.1876 45.3582i −1.41814 2.45629i
\(342\) 0 0
\(343\) 14.4755 11.5525i 0.781601 0.623779i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 22.7079 1.21902 0.609511 0.792778i \(-0.291366\pi\)
0.609511 + 0.792778i \(0.291366\pi\)
\(348\) 0 0
\(349\) −9.39145 + 16.2665i −0.502713 + 0.870724i 0.497282 + 0.867589i \(0.334331\pi\)
−0.999995 + 0.00313522i \(0.999002\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.8421 25.7073i −0.789967 1.36826i −0.925986 0.377557i \(-0.876764\pi\)
0.136019 0.990706i \(-0.456569\pi\)
\(354\) 0 0
\(355\) −5.54488 + 9.60401i −0.294291 + 0.509728i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.5829 21.7942i −0.664099 1.15025i −0.979529 0.201304i \(-0.935482\pi\)
0.315430 0.948949i \(-0.397851\pi\)
\(360\) 0 0
\(361\) −18.8410 + 32.6336i −0.991633 + 1.71756i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1.26152 2.18501i −0.0660309 0.114369i
\(366\) 0 0
\(367\) −13.2534 22.9555i −0.691819 1.19827i −0.971241 0.238098i \(-0.923476\pi\)
0.279422 0.960168i \(-0.409857\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −25.0295 26.9687i −1.29947 1.40015i
\(372\) 0 0
\(373\) 6.97815 12.0865i 0.361315 0.625816i −0.626863 0.779130i \(-0.715661\pi\)
0.988178 + 0.153314i \(0.0489946\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 20.6076 1.06134
\(378\) 0 0
\(379\) 10.5537 0.542106 0.271053 0.962564i \(-0.412628\pi\)
0.271053 + 0.962564i \(0.412628\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4.72557 + 8.18493i −0.241465 + 0.418230i −0.961132 0.276090i \(-0.910961\pi\)
0.719667 + 0.694320i \(0.244295\pi\)
\(384\) 0 0
\(385\) −5.46472 + 17.7239i −0.278508 + 0.903296i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 14.3740 + 24.8966i 0.728793 + 1.26231i 0.957394 + 0.288786i \(0.0932517\pi\)
−0.228601 + 0.973520i \(0.573415\pi\)
\(390\) 0 0
\(391\) −10.5653 18.2996i −0.534310 0.925452i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.20433 2.08597i 0.0605966 0.104956i
\(396\) 0 0
\(397\) −4.34642 7.52822i −0.218140 0.377830i 0.736099 0.676874i \(-0.236666\pi\)
−0.954239 + 0.299044i \(0.903332\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 17.0514 29.5339i 0.851507 1.47485i −0.0283402 0.999598i \(-0.509022\pi\)
0.879848 0.475256i \(-0.157644\pi\)
\(402\) 0 0
\(403\) −15.6486 27.1042i −0.779514 1.35016i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.469673 0.813497i 0.0232808 0.0403236i
\(408\) 0 0
\(409\) −7.96427 −0.393808 −0.196904 0.980423i \(-0.563089\pi\)
−0.196904 + 0.980423i \(0.563089\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.29199 17.1637i 0.260402 0.844571i
\(414\) 0 0
\(415\) −0.0141870 0.0245726i −0.000696413 0.00120622i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 11.2178 + 19.4297i 0.548024 + 0.949205i 0.998410 + 0.0563709i \(0.0179529\pi\)
−0.450386 + 0.892834i \(0.648714\pi\)
\(420\) 0 0
\(421\) 16.2910 28.2169i 0.793977 1.37521i −0.129511 0.991578i \(-0.541341\pi\)
0.923487 0.383630i \(-0.125326\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −7.82539 −0.379587
\(426\) 0 0
\(427\) −4.59659 + 14.9083i −0.222445 + 0.721464i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −11.2666 + 19.5143i −0.542694 + 0.939973i 0.456054 + 0.889952i \(0.349262\pi\)
−0.998748 + 0.0500212i \(0.984071\pi\)
\(432\) 0 0
\(433\) 11.1868 0.537602 0.268801 0.963196i \(-0.413373\pi\)
0.268801 + 0.963196i \(0.413373\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 61.1964 2.92742
\(438\) 0 0
\(439\) 7.56355 0.360989 0.180494 0.983576i \(-0.442230\pi\)
0.180494 + 0.983576i \(0.442230\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.62768 0.172356 0.0861781 0.996280i \(-0.472535\pi\)
0.0861781 + 0.996280i \(0.472535\pi\)
\(444\) 0 0
\(445\) 20.6897 0.980786
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5.04851 0.238254 0.119127 0.992879i \(-0.461990\pi\)
0.119127 + 0.992879i \(0.461990\pi\)
\(450\) 0 0
\(451\) 5.07041 8.78220i 0.238756 0.413538i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.26549 + 10.5911i −0.153089 + 0.496519i
\(456\) 0 0
\(457\) 24.1127 1.12795 0.563973 0.825793i \(-0.309272\pi\)
0.563973 + 0.825793i \(0.309272\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −5.25162 + 9.09607i −0.244592 + 0.423646i −0.962017 0.272990i \(-0.911987\pi\)
0.717425 + 0.696636i \(0.245321\pi\)
\(462\) 0 0
\(463\) −1.82121 3.15443i −0.0846387 0.146599i 0.820598 0.571505i \(-0.193640\pi\)
−0.905237 + 0.424907i \(0.860307\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −15.9933 27.7012i −0.740082 1.28186i −0.952457 0.304672i \(-0.901453\pi\)
0.212375 0.977188i \(-0.431880\pi\)
\(468\) 0 0
\(469\) −7.80508 + 25.3145i −0.360405 + 1.16892i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 21.7685 1.00092
\(474\) 0 0
\(475\) 11.3316 19.6268i 0.519928 0.900541i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 17.3613 + 30.0706i 0.793257 + 1.37396i 0.923940 + 0.382537i \(0.124950\pi\)
−0.130683 + 0.991424i \(0.541717\pi\)
\(480\) 0 0
\(481\) 0.280657 0.486113i 0.0127969 0.0221648i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.11686 + 10.5947i 0.277752 + 0.481081i
\(486\) 0 0
\(487\) −17.9411 + 31.0749i −0.812988 + 1.40814i 0.0977757 + 0.995208i \(0.468827\pi\)
−0.910764 + 0.412928i \(0.864506\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −0.0427795 0.0740962i −0.00193061 0.00334391i 0.865058 0.501671i \(-0.167281\pi\)
−0.866989 + 0.498327i \(0.833948\pi\)
\(492\) 0 0
\(493\) 9.01981 + 15.6228i 0.406232 + 0.703614i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.12852 19.8769i 0.274902 0.891599i
\(498\) 0 0
\(499\) 6.27842 10.8745i 0.281061 0.486811i −0.690586 0.723251i \(-0.742647\pi\)
0.971646 + 0.236439i \(0.0759805\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 42.8822 1.91202 0.956011 0.293332i \(-0.0947643\pi\)
0.956011 + 0.293332i \(0.0947643\pi\)
\(504\) 0 0
\(505\) 15.6976 0.698536
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 7.48102 12.9575i 0.331590 0.574331i −0.651234 0.758877i \(-0.725748\pi\)
0.982824 + 0.184546i \(0.0590815\pi\)
\(510\) 0 0
\(511\) 3.21919 + 3.46860i 0.142408 + 0.153442i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7.61799 + 13.1948i 0.335689 + 0.581430i
\(516\) 0 0
\(517\) −23.3084 40.3714i −1.02510 1.77553i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 18.8479 32.6454i 0.825740 1.43022i −0.0756130 0.997137i \(-0.524091\pi\)
0.901353 0.433086i \(-0.142575\pi\)
\(522\) 0 0
\(523\) −0.707999 1.22629i −0.0309586 0.0536219i 0.850131 0.526571i \(-0.176523\pi\)
−0.881090 + 0.472949i \(0.843189\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 13.6986 23.7267i 0.596721 1.03355i
\(528\) 0 0
\(529\) −21.5351 37.2999i −0.936310 1.62174i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.02987 5.24788i 0.131238 0.227311i
\(534\) 0 0
\(535\) 23.1839 1.00233
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.59114 34.6911i 0.111608 1.49425i
\(540\) 0 0
\(541\) −3.35266 5.80697i −0.144142 0.249661i 0.784911 0.619609i \(-0.212709\pi\)
−0.929052 + 0.369948i \(0.879376\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −8.14562 14.1086i −0.348920 0.604347i
\(546\) 0 0
\(547\) −15.8175 + 27.3968i −0.676309 + 1.17140i 0.299776 + 0.954010i \(0.403088\pi\)
−0.976084 + 0.217392i \(0.930245\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −52.2446 −2.22569
\(552\) 0 0
\(553\) −1.33110 + 4.31721i −0.0566041 + 0.183586i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −13.6007 + 23.5572i −0.576282 + 0.998149i 0.419620 + 0.907700i \(0.362164\pi\)
−0.995901 + 0.0904489i \(0.971170\pi\)
\(558\) 0 0
\(559\) 13.0080 0.550179
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.30235 −0.0970326 −0.0485163 0.998822i \(-0.515449\pi\)
−0.0485163 + 0.998822i \(0.515449\pi\)
\(564\) 0 0
\(565\) 1.66598 0.0700882
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 33.9473 1.42315 0.711573 0.702612i \(-0.247983\pi\)
0.711573 + 0.702612i \(0.247983\pi\)
\(570\) 0 0
\(571\) 0.229245 0.00959362 0.00479681 0.999988i \(-0.498473\pi\)
0.00479681 + 0.999988i \(0.498473\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −24.4681 −1.02039
\(576\) 0 0
\(577\) −11.5733 + 20.0455i −0.481802 + 0.834505i −0.999782 0.0208877i \(-0.993351\pi\)
0.517980 + 0.855393i \(0.326684\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0.0362029 + 0.0390078i 0.00150195 + 0.00161832i
\(582\) 0 0
\(583\) −69.1121 −2.86233
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.6739 32.3441i 0.770752 1.33498i −0.166399 0.986059i \(-0.553214\pi\)
0.937151 0.348924i \(-0.113453\pi\)
\(588\) 0 0
\(589\) 39.6726 + 68.7149i 1.63468 + 2.83135i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −10.1975 17.6626i −0.418761 0.725315i 0.577054 0.816706i \(-0.304202\pi\)
−0.995815 + 0.0913907i \(0.970869\pi\)
\(594\) 0 0
\(595\) −9.45848 + 2.16006i −0.387760 + 0.0885540i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 24.7912 1.01294 0.506470 0.862258i \(-0.330950\pi\)
0.506470 + 0.862258i \(0.330950\pi\)
\(600\) 0 0
\(601\) −23.0441 + 39.9135i −0.939987 + 1.62811i −0.174497 + 0.984658i \(0.555830\pi\)
−0.765490 + 0.643448i \(0.777503\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9.66094 + 16.7332i 0.392773 + 0.680303i
\(606\) 0 0
\(607\) 11.8399 20.5073i 0.480566 0.832365i −0.519185 0.854662i \(-0.673765\pi\)
0.999751 + 0.0222967i \(0.00709786\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −13.9282 24.1243i −0.563473 0.975965i
\(612\) 0 0
\(613\) 11.2993 19.5710i 0.456376 0.790467i −0.542390 0.840127i \(-0.682480\pi\)
0.998766 + 0.0496599i \(0.0158138\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −9.62964 16.6790i −0.387675 0.671472i 0.604462 0.796634i \(-0.293388\pi\)
−0.992136 + 0.125162i \(0.960055\pi\)
\(618\) 0 0
\(619\) 1.28066 + 2.21816i 0.0514740 + 0.0891555i 0.890614 0.454759i \(-0.150275\pi\)
−0.839140 + 0.543915i \(0.816941\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −37.8321 + 8.63983i −1.51571 + 0.346147i
\(624\) 0 0
\(625\) 0.443780 0.768650i 0.0177512 0.0307460i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.491368 0.0195921
\(630\) 0 0
\(631\) −23.3806 −0.930767 −0.465384 0.885109i \(-0.654084\pi\)
−0.465384 + 0.885109i \(0.654084\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6.46682 11.2009i 0.256628 0.444492i
\(636\) 0 0
\(637\) 1.54836 20.7300i 0.0613481 0.821351i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −5.39784 9.34933i −0.213202 0.369277i 0.739513 0.673142i \(-0.235056\pi\)
−0.952715 + 0.303866i \(0.901723\pi\)
\(642\) 0 0
\(643\) 0.783523 + 1.35710i 0.0308991 + 0.0535189i 0.881061 0.473002i \(-0.156830\pi\)
−0.850162 + 0.526521i \(0.823496\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 14.7966 25.6285i 0.581716 1.00756i −0.413560 0.910477i \(-0.635715\pi\)
0.995276 0.0970851i \(-0.0309519\pi\)
\(648\) 0 0
\(649\) −16.8686 29.2173i −0.662152 1.14688i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −19.3696 + 33.5491i −0.757991 + 1.31288i 0.185883 + 0.982572i \(0.440486\pi\)
−0.943874 + 0.330307i \(0.892848\pi\)
\(654\) 0 0
\(655\) 5.42036 + 9.38834i 0.211791 + 0.366833i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −14.0733 + 24.3756i −0.548216 + 0.949539i 0.450180 + 0.892938i \(0.351360\pi\)
−0.998397 + 0.0566011i \(0.981974\pi\)
\(660\) 0 0
\(661\) 27.4863 1.06909 0.534546 0.845139i \(-0.320483\pi\)
0.534546 + 0.845139i \(0.320483\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 8.27872 26.8507i 0.321035 1.04122i
\(666\) 0 0
\(667\) 28.2028 + 48.8486i 1.09202 + 1.89143i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 14.6520 + 25.3780i 0.565634 + 0.979707i
\(672\) 0 0
\(673\) 5.45834 9.45412i 0.210404 0.364430i −0.741437 0.671022i \(-0.765856\pi\)
0.951841 + 0.306592i \(0.0991889\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 19.1456 0.735826 0.367913 0.929860i \(-0.380072\pi\)
0.367913 + 0.929860i \(0.380072\pi\)
\(678\) 0 0
\(679\) −15.6092 16.8186i −0.599027 0.645438i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −2.60854 + 4.51812i −0.0998130 + 0.172881i −0.911607 0.411063i \(-0.865158\pi\)
0.811794 + 0.583944i \(0.198491\pi\)
\(684\) 0 0
\(685\) 6.73408 0.257296
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −41.2986 −1.57335
\(690\) 0 0
\(691\) 32.4367 1.23395 0.616976 0.786982i \(-0.288358\pi\)
0.616976 + 0.786982i \(0.288358\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −29.4483 −1.11704
\(696\) 0 0
\(697\) 5.30461 0.200927
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −15.0981 −0.570246 −0.285123 0.958491i \(-0.592034\pi\)
−0.285123 + 0.958491i \(0.592034\pi\)
\(702\) 0 0
\(703\) −0.711525 + 1.23240i −0.0268357 + 0.0464808i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −28.7039 + 6.55519i −1.07952 + 0.246533i
\(708\) 0 0
\(709\) −9.01472 −0.338555 −0.169277 0.985568i \(-0.554143\pi\)
−0.169277 + 0.985568i \(0.554143\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 42.8322 74.1876i 1.60408 2.77835i
\(714\) 0 0
\(715\) 10.4090 + 18.0289i 0.389275 + 0.674244i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 13.2753 + 22.9934i 0.495084 + 0.857510i 0.999984 0.00566774i \(-0.00180411\pi\)
−0.504900 + 0.863178i \(0.668471\pi\)
\(720\) 0 0
\(721\) −19.4399 20.9460i −0.723978 0.780070i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 20.8889 0.775794
\(726\) 0 0
\(727\) 4.84259 8.38761i 0.179602 0.311079i −0.762143 0.647409i \(-0.775852\pi\)
0.941744 + 0.336330i \(0.109186\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.69351 + 9.86144i 0.210582 + 0.364739i
\(732\) 0 0
\(733\) −4.23676 + 7.33828i −0.156488 + 0.271046i −0.933600 0.358317i \(-0.883351\pi\)
0.777112 + 0.629363i \(0.216684\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 24.8793 + 43.0922i 0.916441 + 1.58732i
\(738\) 0 0
\(739\) −4.58445 + 7.94050i −0.168642 + 0.292096i −0.937943 0.346791i \(-0.887271\pi\)
0.769301 + 0.638887i \(0.220605\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.80108 + 10.0478i 0.212821 + 0.368617i 0.952596 0.304237i \(-0.0984015\pi\)
−0.739775 + 0.672854i \(0.765068\pi\)
\(744\) 0 0
\(745\) −8.32329 14.4164i −0.304942 0.528175i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −42.3929 + 9.68140i −1.54900 + 0.353751i
\(750\) 0 0
\(751\) 1.92515 3.33445i 0.0702496 0.121676i −0.828761 0.559603i \(-0.810954\pi\)
0.899011 + 0.437927i \(0.144287\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 9.90616 0.360522
\(756\) 0 0
\(757\) 2.92720 0.106391 0.0531955 0.998584i \(-0.483059\pi\)
0.0531955 + 0.998584i \(0.483059\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3.15470 5.46410i 0.114358 0.198074i −0.803165 0.595757i \(-0.796852\pi\)
0.917523 + 0.397683i \(0.130186\pi\)
\(762\) 0 0
\(763\) 20.7863 + 22.3967i 0.752514 + 0.810817i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −10.0800 17.4591i −0.363968 0.630411i
\(768\) 0 0
\(769\) −12.4309 21.5309i −0.448269 0.776424i 0.550005 0.835161i \(-0.314626\pi\)
−0.998273 + 0.0587375i \(0.981293\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −7.01982 + 12.1587i −0.252485 + 0.437318i −0.964209 0.265142i \(-0.914581\pi\)
0.711724 + 0.702459i \(0.247915\pi\)
\(774\) 0 0
\(775\) −15.8623 27.4742i −0.569789 0.986903i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −7.68135 + 13.3045i −0.275213 + 0.476683i
\(780\) 0 0
\(781\) −19.5351 33.8358i −0.699022 1.21074i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.70944 8.15699i 0.168087 0.291135i
\(786\) 0 0
\(787\) −25.3794 −0.904677 −0.452338 0.891846i \(-0.649410\pi\)
−0.452338 + 0.891846i \(0.649410\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −3.04632 + 0.695697i −0.108315 + 0.0247361i
\(792\) 0 0
\(793\) 8.75544 + 15.1649i 0.310915 + 0.538520i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −9.59451 16.6182i −0.339855 0.588646i 0.644550 0.764562i \(-0.277045\pi\)
−0.984405 + 0.175916i \(0.943711\pi\)
\(798\) 0 0
\(799\) 12.1925 21.1181i 0.431341 0.747105i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.88890 0.313683
\(804\) 0 0
\(805\) −29.5744 + 6.75400i −1.04236 + 0.238047i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0.221134 0.383016i 0.00777467 0.0134661i −0.862112 0.506718i \(-0.830859\pi\)
0.869887 + 0.493252i \(0.164192\pi\)
\(810\) 0 0
\(811\) 28.1510 0.988516 0.494258 0.869315i \(-0.335440\pi\)
0.494258 + 0.869315i \(0.335440\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −0.479225 −0.0167865
\(816\) 0 0
\(817\) −32.9780 −1.15375
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8.53292 0.297801 0.148900 0.988852i \(-0.452427\pi\)
0.148900 + 0.988852i \(0.452427\pi\)
\(822\) 0 0
\(823\) −29.5179 −1.02893 −0.514465 0.857511i \(-0.672009\pi\)
−0.514465 + 0.857511i \(0.672009\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −35.7222 −1.24218 −0.621092 0.783738i \(-0.713311\pi\)
−0.621092 + 0.783738i \(0.713311\pi\)
\(828\) 0 0
\(829\) −25.8399 + 44.7560i −0.897456 + 1.55444i −0.0667215 + 0.997772i \(0.521254\pi\)
−0.830735 + 0.556668i \(0.812079\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 16.3933 7.89955i 0.567993 0.273703i
\(834\) 0 0
\(835\) 1.26469 0.0437666
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 18.6284 32.2653i 0.643122 1.11392i −0.341609 0.939842i \(-0.610972\pi\)
0.984732 0.174079i \(-0.0556947\pi\)
\(840\) 0 0
\(841\) −9.57726 16.5883i −0.330250 0.572010i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.94889 5.10762i −0.101445 0.175708i
\(846\) 0 0
\(847\) −24.6531 26.5632i −0.847091 0.912722i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.53639 0.0526667
\(852\) 0 0
\(853\) 6.03115 10.4463i 0.206503 0.357673i −0.744108 0.668060i \(-0.767125\pi\)
0.950610 + 0.310386i \(0.100458\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14.1047 + 24.4301i 0.481808 + 0.834515i 0.999782 0.0208808i \(-0.00664705\pi\)
−0.517974 + 0.855396i \(0.673314\pi\)
\(858\) 0 0
\(859\) 25.7641 44.6247i 0.879059 1.52257i 0.0266833 0.999644i \(-0.491505\pi\)
0.852375 0.522930i \(-0.175161\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.57423 2.72664i −0.0535873 0.0928159i 0.837987 0.545690i \(-0.183732\pi\)
−0.891575 + 0.452874i \(0.850399\pi\)
\(864\) 0 0
\(865\) 3.41076 5.90762i 0.115969 0.200865i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.24298 + 7.34906i 0.143933 + 0.249300i
\(870\) 0 0
\(871\) 14.8669 + 25.7501i 0.503744 + 0.872510i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −8.80814 + 28.5678i −0.297770 + 0.965768i
\(876\) 0 0
\(877\) −1.27555 + 2.20932i −0.0430723 + 0.0746034i −0.886758 0.462234i \(-0.847048\pi\)
0.843686 + 0.536838i \(0.180381\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −14.4378 −0.486421 −0.243210 0.969974i \(-0.578201\pi\)
−0.243210 + 0.969974i \(0.578201\pi\)
\(882\) 0 0
\(883\) 0.478915 0.0161168 0.00805839 0.999968i \(-0.497435\pi\)
0.00805839 + 0.999968i \(0.497435\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −5.62821 + 9.74834i −0.188977 + 0.327317i −0.944909 0.327332i \(-0.893850\pi\)
0.755933 + 0.654649i \(0.227184\pi\)
\(888\) 0 0
\(889\) −7.14750 + 23.1818i −0.239719 + 0.777492i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 35.3108 + 61.1602i 1.18163 + 2.04665i
\(894\) 0 0
\(895\) 2.00960 + 3.48073i 0.0671734 + 0.116348i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −36.5667 + 63.3355i −1.21957 + 2.11236i
\(900\) 0 0
\(901\) −18.0761 31.3088i −0.602203 1.04305i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.03047 1.78483i 0.0342540 0.0593297i
\(906\) 0 0
\(907\) −0.359496 0.622666i −0.0119369 0.0206753i 0.859995 0.510302i \(-0.170466\pi\)
−0.871932 + 0.489627i \(0.837133\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −10.5890 + 18.3406i −0.350828 + 0.607651i −0.986395 0.164394i \(-0.947433\pi\)
0.635567 + 0.772046i \(0.280766\pi\)
\(912\) 0 0
\(913\) 0.0999644 0.00330834
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −13.8319 14.9035i −0.456769 0.492158i
\(918\) 0 0
\(919\) 7.17784 + 12.4324i 0.236775 + 0.410106i 0.959787 0.280729i \(-0.0905762\pi\)
−0.723012 + 0.690835i \(0.757243\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −11.6734 20.2189i −0.384234 0.665513i
\(924\) 0 0
\(925\) 0.284489 0.492749i 0.00935393 0.0162015i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −37.3085 −1.22405 −0.612026 0.790838i \(-0.709645\pi\)
−0.612026 + 0.790838i \(0.709645\pi\)
\(930\) 0 0
\(931\) −3.92541 + 52.5548i −0.128650 + 1.72242i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −9.11192 + 15.7823i −0.297992 + 0.516137i
\(936\) 0 0
\(937\) 50.9094 1.66314 0.831568 0.555423i \(-0.187444\pi\)
0.831568 + 0.555423i \(0.187444\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 23.8503 0.777497 0.388749 0.921344i \(-0.372907\pi\)
0.388749 + 0.921344i \(0.372907\pi\)
\(942\) 0 0
\(943\) 16.5862 0.540122
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 58.7152 1.90799 0.953994 0.299825i \(-0.0969283\pi\)
0.953994 + 0.299825i \(0.0969283\pi\)
\(948\) 0 0
\(949\) 5.31164 0.172423
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 28.4324 0.921015 0.460507 0.887656i \(-0.347667\pi\)
0.460507 + 0.887656i \(0.347667\pi\)
\(954\) 0 0
\(955\) 3.23128 5.59674i 0.104562 0.181106i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −12.3136 + 2.81209i −0.397626 + 0.0908071i
\(960\) 0 0
\(961\) 80.0697 2.58289
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −9.58079 + 16.5944i −0.308416 + 0.534193i
\(966\) 0 0
\(967\) 13.8466 + 23.9830i 0.445276 + 0.771240i 0.998071 0.0620766i \(-0.0197723\pi\)
−0.552796 + 0.833317i \(0.686439\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −0.510672 0.884510i −0.0163882 0.0283853i 0.857715 0.514125i \(-0.171883\pi\)
−0.874103 + 0.485740i \(0.838550\pi\)
\(972\) 0 0
\(973\) 53.8476 12.2973i 1.72627 0.394235i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −37.8037 −1.20945 −0.604723 0.796436i \(-0.706716\pi\)
−0.604723 + 0.796436i \(0.706716\pi\)
\(978\) 0 0
\(979\) −36.4459 + 63.1261i −1.16482 + 2.01752i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −8.19366 14.1918i −0.261337 0.452649i 0.705260 0.708948i \(-0.250830\pi\)
−0.966598 + 0.256299i \(0.917497\pi\)
\(984\) 0 0
\(985\) −9.44430 + 16.3580i −0.300920 + 0.521209i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 17.8022 + 30.8343i 0.566077 + 0.980475i
\(990\) 0 0
\(991\) 13.7067 23.7408i 0.435409 0.754150i −0.561920 0.827192i \(-0.689937\pi\)
0.997329 + 0.0730412i \(0.0232704\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −0.543394 0.941186i −0.0172268 0.0298376i
\(996\) 0 0
\(997\) 7.67099 + 13.2865i 0.242943 + 0.420789i 0.961551 0.274626i \(-0.0885540\pi\)
−0.718609 + 0.695415i \(0.755221\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.i.l.865.3 8
3.2 odd 2 2268.2.i.m.865.2 8
7.2 even 3 2268.2.l.m.541.2 8
9.2 odd 6 2268.2.k.d.1621.2 yes 8
9.4 even 3 2268.2.l.m.109.2 8
9.5 odd 6 2268.2.l.l.109.3 8
9.7 even 3 2268.2.k.c.1621.3 yes 8
21.2 odd 6 2268.2.l.l.541.3 8
63.2 odd 6 2268.2.k.d.1297.2 yes 8
63.16 even 3 2268.2.k.c.1297.3 8
63.23 odd 6 2268.2.i.m.2053.2 8
63.58 even 3 inner 2268.2.i.l.2053.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2268.2.i.l.865.3 8 1.1 even 1 trivial
2268.2.i.l.2053.3 8 63.58 even 3 inner
2268.2.i.m.865.2 8 3.2 odd 2
2268.2.i.m.2053.2 8 63.23 odd 6
2268.2.k.c.1297.3 8 63.16 even 3
2268.2.k.c.1621.3 yes 8 9.7 even 3
2268.2.k.d.1297.2 yes 8 63.2 odd 6
2268.2.k.d.1621.2 yes 8 9.2 odd 6
2268.2.l.l.109.3 8 9.5 odd 6
2268.2.l.l.541.3 8 21.2 odd 6
2268.2.l.m.109.2 8 9.4 even 3
2268.2.l.m.541.2 8 7.2 even 3