Properties

Label 2268.2.k.c.1621.3
Level $2268$
Weight $2$
Character 2268.1621
Analytic conductor $18.110$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2268,2,Mod(1297,2268)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2268, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2268.1297");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.310217769.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 4x^{6} - 2x^{5} + 15x^{4} - 4x^{3} + 5x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1621.3
Root \(-0.198169 - 0.343239i\) of defining polynomial
Character \(\chi\) \(=\) 2268.1621
Dual form 2268.2.k.c.1297.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.705299 + 1.22161i) q^{5} +(2.57934 - 0.589053i) q^{7} +O(q^{10})\) \(q+(0.705299 + 1.22161i) q^{5} +(2.57934 - 0.589053i) q^{7} +(2.48484 - 4.30386i) q^{11} -2.96967 q^{13} +(-1.29981 + 2.25133i) q^{17} +(-3.76437 - 6.52009i) q^{19} +(-4.06418 - 7.03937i) q^{23} +(1.50511 - 2.60692i) q^{25} -6.93935 q^{29} +(5.26948 - 9.12701i) q^{31} +(2.53880 + 2.73550i) q^{35} +(-0.0945078 - 0.163692i) q^{37} +2.04054 q^{41} -4.38027 q^{43} +(4.69014 + 8.12355i) q^{47} +(6.30603 - 3.03874i) q^{49} +(-6.95339 + 12.0436i) q^{53} +7.01021 q^{55} +(3.39431 - 5.87913i) q^{59} +(-2.94828 - 5.10658i) q^{61} +(-2.09451 - 3.62779i) q^{65} +(-5.00623 + 8.67104i) q^{67} -7.86174 q^{71} +(0.894315 - 1.54900i) q^{73} +(3.87405 - 12.5648i) q^{77} +(-0.853775 - 1.47878i) q^{79} -0.0201149 q^{83} -3.66701 q^{85} +(7.33366 + 12.7023i) q^{89} +(-7.65981 + 1.74929i) q^{91} +(5.31002 - 9.19722i) q^{95} +8.67272 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{5} + q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{5} + q^{7} + 5 q^{11} + 6 q^{13} + 2 q^{17} - 8 q^{19} + 2 q^{23} - 8 q^{25} + 4 q^{29} + 11 q^{35} + 4 q^{37} + 6 q^{41} + 10 q^{43} + 15 q^{47} + 5 q^{49} - 24 q^{53} + 16 q^{55} + 10 q^{59} - 12 q^{61} - 12 q^{65} - 7 q^{67} - 22 q^{71} - 10 q^{73} + 19 q^{77} - 70 q^{83} - 26 q^{85} - 18 q^{89} - 9 q^{91} - 10 q^{95} + 38 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.705299 + 1.22161i 0.315419 + 0.546322i 0.979527 0.201315i \(-0.0645215\pi\)
−0.664107 + 0.747637i \(0.731188\pi\)
\(6\) 0 0
\(7\) 2.57934 0.589053i 0.974900 0.222641i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.48484 4.30386i 0.749206 1.29766i −0.198997 0.980000i \(-0.563768\pi\)
0.948204 0.317663i \(-0.102898\pi\)
\(12\) 0 0
\(13\) −2.96967 −0.823639 −0.411820 0.911265i \(-0.635107\pi\)
−0.411820 + 0.911265i \(0.635107\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.29981 + 2.25133i −0.315249 + 0.546028i −0.979491 0.201490i \(-0.935422\pi\)
0.664241 + 0.747518i \(0.268755\pi\)
\(18\) 0 0
\(19\) −3.76437 6.52009i −0.863607 1.49581i −0.868424 0.495822i \(-0.834867\pi\)
0.00481762 0.999988i \(-0.498466\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.06418 7.03937i −0.847440 1.46781i −0.883485 0.468459i \(-0.844809\pi\)
0.0360448 0.999350i \(-0.488524\pi\)
\(24\) 0 0
\(25\) 1.50511 2.60692i 0.301021 0.521384i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.93935 −1.28860 −0.644302 0.764771i \(-0.722852\pi\)
−0.644302 + 0.764771i \(0.722852\pi\)
\(30\) 0 0
\(31\) 5.26948 9.12701i 0.946427 1.63926i 0.193557 0.981089i \(-0.437998\pi\)
0.752870 0.658170i \(-0.228669\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.53880 + 2.73550i 0.429136 + 0.462385i
\(36\) 0 0
\(37\) −0.0945078 0.163692i −0.0155370 0.0269108i 0.858152 0.513395i \(-0.171612\pi\)
−0.873689 + 0.486484i \(0.838279\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.04054 0.318679 0.159339 0.987224i \(-0.449064\pi\)
0.159339 + 0.987224i \(0.449064\pi\)
\(42\) 0 0
\(43\) −4.38027 −0.667985 −0.333993 0.942576i \(-0.608396\pi\)
−0.333993 + 0.942576i \(0.608396\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.69014 + 8.12355i 0.684127 + 1.18494i 0.973710 + 0.227789i \(0.0731498\pi\)
−0.289584 + 0.957153i \(0.593517\pi\)
\(48\) 0 0
\(49\) 6.30603 3.03874i 0.900862 0.434106i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.95339 + 12.0436i −0.955121 + 1.65432i −0.221032 + 0.975267i \(0.570942\pi\)
−0.734090 + 0.679052i \(0.762391\pi\)
\(54\) 0 0
\(55\) 7.01021 0.945257
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.39431 5.87913i 0.441902 0.765397i −0.555929 0.831230i \(-0.687637\pi\)
0.997831 + 0.0658331i \(0.0209705\pi\)
\(60\) 0 0
\(61\) −2.94828 5.10658i −0.377489 0.653830i 0.613207 0.789922i \(-0.289879\pi\)
−0.990696 + 0.136092i \(0.956546\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.09451 3.62779i −0.259792 0.449972i
\(66\) 0 0
\(67\) −5.00623 + 8.67104i −0.611608 + 1.05934i 0.379362 + 0.925248i \(0.376144\pi\)
−0.990970 + 0.134087i \(0.957190\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7.86174 −0.933016 −0.466508 0.884517i \(-0.654488\pi\)
−0.466508 + 0.884517i \(0.654488\pi\)
\(72\) 0 0
\(73\) 0.894315 1.54900i 0.104672 0.181297i −0.808932 0.587902i \(-0.799954\pi\)
0.913604 + 0.406605i \(0.133288\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.87405 12.5648i 0.441488 1.43190i
\(78\) 0 0
\(79\) −0.853775 1.47878i −0.0960572 0.166376i 0.813992 0.580876i \(-0.197290\pi\)
−0.910049 + 0.414500i \(0.863957\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.0201149 −0.00220789 −0.00110395 0.999999i \(-0.500351\pi\)
−0.00110395 + 0.999999i \(0.500351\pi\)
\(84\) 0 0
\(85\) −3.66701 −0.397743
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.33366 + 12.7023i 0.777366 + 1.34644i 0.933455 + 0.358695i \(0.116778\pi\)
−0.156088 + 0.987743i \(0.549888\pi\)
\(90\) 0 0
\(91\) −7.65981 + 1.74929i −0.802966 + 0.183376i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.31002 9.19722i 0.544796 0.943615i
\(96\) 0 0
\(97\) 8.67272 0.880581 0.440291 0.897855i \(-0.354875\pi\)
0.440291 + 0.897855i \(0.354875\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.56418 9.63744i 0.553657 0.958961i −0.444350 0.895853i \(-0.646565\pi\)
0.998007 0.0631082i \(-0.0201013\pi\)
\(102\) 0 0
\(103\) −5.40054 9.35401i −0.532131 0.921678i −0.999296 0.0375081i \(-0.988058\pi\)
0.467165 0.884170i \(-0.345275\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.21776 + 14.2336i 0.794441 + 1.37601i 0.923193 + 0.384336i \(0.125569\pi\)
−0.128752 + 0.991677i \(0.541097\pi\)
\(108\) 0 0
\(109\) 5.77459 10.0019i 0.553105 0.958006i −0.444943 0.895559i \(-0.646776\pi\)
0.998048 0.0624472i \(-0.0198905\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.18104 −0.111103 −0.0555516 0.998456i \(-0.517692\pi\)
−0.0555516 + 0.998456i \(0.517692\pi\)
\(114\) 0 0
\(115\) 5.73293 9.92972i 0.534598 0.925951i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.02650 + 6.57261i −0.185769 + 0.602511i
\(120\) 0 0
\(121\) −6.84882 11.8625i −0.622620 1.07841i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.2992 1.01063
\(126\) 0 0
\(127\) 9.16890 0.813608 0.406804 0.913515i \(-0.366643\pi\)
0.406804 + 0.913515i \(0.366643\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.84260 6.65557i −0.335729 0.581500i 0.647895 0.761729i \(-0.275649\pi\)
−0.983625 + 0.180229i \(0.942316\pi\)
\(132\) 0 0
\(133\) −13.5503 14.6001i −1.17496 1.26599i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.38696 4.13433i 0.203932 0.353220i −0.745860 0.666102i \(-0.767961\pi\)
0.949792 + 0.312883i \(0.101295\pi\)
\(138\) 0 0
\(139\) 20.8765 1.77072 0.885359 0.464908i \(-0.153913\pi\)
0.885359 + 0.464908i \(0.153913\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −7.37915 + 12.7811i −0.617076 + 1.06881i
\(144\) 0 0
\(145\) −4.89431 8.47720i −0.406451 0.703993i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.90054 + 10.2200i 0.483391 + 0.837258i 0.999818 0.0190732i \(-0.00607156\pi\)
−0.516427 + 0.856331i \(0.672738\pi\)
\(150\) 0 0
\(151\) 3.51133 6.08181i 0.285748 0.494930i −0.687042 0.726618i \(-0.741091\pi\)
0.972790 + 0.231687i \(0.0744246\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 14.8662 1.19409
\(156\) 0 0
\(157\) −3.33861 + 5.78265i −0.266450 + 0.461505i −0.967943 0.251172i \(-0.919184\pi\)
0.701492 + 0.712677i \(0.252517\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −14.6295 15.7629i −1.15296 1.24229i
\(162\) 0 0
\(163\) −0.169866 0.294216i −0.0133049 0.0230448i 0.859296 0.511478i \(-0.170902\pi\)
−0.872601 + 0.488433i \(0.837569\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −0.896566 −0.0693784 −0.0346892 0.999398i \(-0.511044\pi\)
−0.0346892 + 0.999398i \(0.511044\pi\)
\(168\) 0 0
\(169\) −4.18104 −0.321619
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.41796 4.18802i −0.183834 0.318409i 0.759349 0.650683i \(-0.225517\pi\)
−0.943183 + 0.332274i \(0.892184\pi\)
\(174\) 0 0
\(175\) 2.34657 7.61073i 0.177384 0.575317i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.42464 + 2.46755i −0.106483 + 0.184434i −0.914343 0.404941i \(-0.867292\pi\)
0.807860 + 0.589374i \(0.200626\pi\)
\(180\) 0 0
\(181\) 1.46104 0.108598 0.0542991 0.998525i \(-0.482708\pi\)
0.0542991 + 0.998525i \(0.482708\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.133313 0.230904i 0.00980133 0.0169764i
\(186\) 0 0
\(187\) 6.45962 + 11.1884i 0.472374 + 0.818176i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.29071 3.96763i −0.165750 0.287088i 0.771171 0.636628i \(-0.219671\pi\)
−0.936921 + 0.349540i \(0.886338\pi\)
\(192\) 0 0
\(193\) 6.79200 11.7641i 0.488899 0.846798i −0.511020 0.859569i \(-0.670732\pi\)
0.999918 + 0.0127713i \(0.00406535\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −13.3905 −0.954032 −0.477016 0.878894i \(-0.658282\pi\)
−0.477016 + 0.878894i \(0.658282\pi\)
\(198\) 0 0
\(199\) 0.385222 0.667225i 0.0273077 0.0472983i −0.852049 0.523463i \(-0.824640\pi\)
0.879356 + 0.476164i \(0.157973\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −17.8990 + 4.08764i −1.25626 + 0.286896i
\(204\) 0 0
\(205\) 1.43919 + 2.49275i 0.100517 + 0.174101i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −37.4154 −2.58808
\(210\) 0 0
\(211\) 4.57153 0.314717 0.157358 0.987542i \(-0.449702\pi\)
0.157358 + 0.987542i \(0.449702\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.08940 5.35100i −0.210695 0.364935i
\(216\) 0 0
\(217\) 8.21551 26.6457i 0.557705 1.80883i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.86000 6.68572i 0.259652 0.449730i
\(222\) 0 0
\(223\) 11.5670 0.774587 0.387293 0.921957i \(-0.373410\pi\)
0.387293 + 0.921957i \(0.373410\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.90054 + 5.02388i −0.192516 + 0.333447i −0.946083 0.323923i \(-0.894998\pi\)
0.753568 + 0.657370i \(0.228331\pi\)
\(228\) 0 0
\(229\) −6.43087 11.1386i −0.424964 0.736059i 0.571453 0.820635i \(-0.306380\pi\)
−0.996417 + 0.0845758i \(0.973046\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.33636 + 10.9749i 0.415109 + 0.718989i 0.995440 0.0953912i \(-0.0304102\pi\)
−0.580331 + 0.814381i \(0.697077\pi\)
\(234\) 0 0
\(235\) −6.61590 + 11.4591i −0.431574 + 0.747507i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.28705 −0.536045 −0.268022 0.963413i \(-0.586370\pi\)
−0.268022 + 0.963413i \(0.586370\pi\)
\(240\) 0 0
\(241\) −8.50848 + 14.7371i −0.548079 + 0.949301i 0.450327 + 0.892864i \(0.351307\pi\)
−0.998406 + 0.0564373i \(0.982026\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 8.15981 + 5.56032i 0.521311 + 0.355236i
\(246\) 0 0
\(247\) 11.1790 + 19.3625i 0.711300 + 1.23201i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 13.3228 0.840926 0.420463 0.907310i \(-0.361868\pi\)
0.420463 + 0.907310i \(0.361868\pi\)
\(252\) 0 0
\(253\) −40.3953 −2.53963
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −0.196207 0.339840i −0.0122390 0.0211987i 0.859841 0.510562i \(-0.170563\pi\)
−0.872080 + 0.489363i \(0.837229\pi\)
\(258\) 0 0
\(259\) −0.340192 0.366549i −0.0211385 0.0227762i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.4342 21.5367i 0.766728 1.32801i −0.172600 0.984992i \(-0.555217\pi\)
0.939328 0.343020i \(-0.111450\pi\)
\(264\) 0 0
\(265\) −19.6169 −1.20506
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.60073 + 2.77255i −0.0975985 + 0.169046i −0.910690 0.413090i \(-0.864449\pi\)
0.813092 + 0.582136i \(0.197783\pi\)
\(270\) 0 0
\(271\) 12.2443 + 21.2077i 0.743786 + 1.28827i 0.950760 + 0.309928i \(0.100305\pi\)
−0.206974 + 0.978346i \(0.566362\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.47989 12.9555i −0.451054 0.781249i
\(276\) 0 0
\(277\) −4.42576 + 7.66564i −0.265918 + 0.460584i −0.967804 0.251706i \(-0.919008\pi\)
0.701886 + 0.712290i \(0.252342\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 16.9416 1.01065 0.505325 0.862929i \(-0.331373\pi\)
0.505325 + 0.862929i \(0.331373\pi\)
\(282\) 0 0
\(283\) −7.26948 + 12.5911i −0.432126 + 0.748464i −0.997056 0.0766748i \(-0.975570\pi\)
0.564930 + 0.825139i \(0.308903\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.26325 1.20199i 0.310680 0.0709510i
\(288\) 0 0
\(289\) 5.12100 + 8.86984i 0.301236 + 0.521755i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 25.9237 1.51448 0.757240 0.653136i \(-0.226547\pi\)
0.757240 + 0.653136i \(0.226547\pi\)
\(294\) 0 0
\(295\) 9.57603 0.557538
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 12.0693 + 20.9046i 0.697985 + 1.20895i
\(300\) 0 0
\(301\) −11.2982 + 2.58021i −0.651219 + 0.148721i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.15884 7.20333i 0.238135 0.412461i
\(306\) 0 0
\(307\) 13.1204 0.748820 0.374410 0.927263i \(-0.377845\pi\)
0.374410 + 0.927263i \(0.377845\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.15245 7.19226i 0.235464 0.407835i −0.723944 0.689859i \(-0.757672\pi\)
0.959407 + 0.282024i \(0.0910057\pi\)
\(312\) 0 0
\(313\) −11.5793 20.0560i −0.654503 1.13363i −0.982018 0.188787i \(-0.939544\pi\)
0.327515 0.944846i \(-0.393789\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.85776 10.1459i −0.329005 0.569853i 0.653310 0.757091i \(-0.273380\pi\)
−0.982315 + 0.187238i \(0.940047\pi\)
\(318\) 0 0
\(319\) −17.2431 + 29.8660i −0.965430 + 1.67217i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 19.5718 1.08901
\(324\) 0 0
\(325\) −4.46967 + 7.74170i −0.247933 + 0.429432i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 16.8827 + 18.1907i 0.930772 + 1.00289i
\(330\) 0 0
\(331\) 8.25094 + 14.2911i 0.453513 + 0.785507i 0.998601 0.0528711i \(-0.0168373\pi\)
−0.545088 + 0.838379i \(0.683504\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −14.1235 −0.771652
\(336\) 0 0
\(337\) 17.9563 0.978142 0.489071 0.872244i \(-0.337336\pi\)
0.489071 + 0.872244i \(0.337336\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −26.1876 45.3582i −1.41814 2.45629i
\(342\) 0 0
\(343\) 14.4755 11.5525i 0.781601 0.623779i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −11.3539 + 19.6656i −0.609511 + 1.05570i 0.381810 + 0.924241i \(0.375301\pi\)
−0.991321 + 0.131463i \(0.958033\pi\)
\(348\) 0 0
\(349\) 18.7829 1.00543 0.502713 0.864454i \(-0.332335\pi\)
0.502713 + 0.864454i \(0.332335\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.8421 + 25.7073i −0.789967 + 1.36826i 0.136019 + 0.990706i \(0.456569\pi\)
−0.925986 + 0.377557i \(0.876764\pi\)
\(354\) 0 0
\(355\) −5.54488 9.60401i −0.294291 0.509728i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.5829 21.7942i −0.664099 1.15025i −0.979529 0.201304i \(-0.935482\pi\)
0.315430 0.948949i \(-0.397851\pi\)
\(360\) 0 0
\(361\) −18.8410 + 32.6336i −0.991633 + 1.71756i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.52304 0.132062
\(366\) 0 0
\(367\) −13.2534 + 22.9555i −0.691819 + 1.19827i 0.279422 + 0.960168i \(0.409857\pi\)
−0.971241 + 0.238098i \(0.923476\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −10.8409 + 35.1606i −0.562829 + 1.82545i
\(372\) 0 0
\(373\) 6.97815 + 12.0865i 0.361315 + 0.625816i 0.988178 0.153314i \(-0.0489946\pi\)
−0.626863 + 0.779130i \(0.715661\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 20.6076 1.06134
\(378\) 0 0
\(379\) 10.5537 0.542106 0.271053 0.962564i \(-0.412628\pi\)
0.271053 + 0.962564i \(0.412628\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4.72557 8.18493i −0.241465 0.418230i 0.719667 0.694320i \(-0.244295\pi\)
−0.961132 + 0.276090i \(0.910961\pi\)
\(384\) 0 0
\(385\) 18.0818 4.12939i 0.921531 0.210453i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 14.3740 24.8966i 0.728793 1.26231i −0.228601 0.973520i \(-0.573415\pi\)
0.957394 0.288786i \(-0.0932517\pi\)
\(390\) 0 0
\(391\) 21.1306 1.06862
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.20433 2.08597i 0.0605966 0.104956i
\(396\) 0 0
\(397\) −4.34642 7.52822i −0.218140 0.377830i 0.736099 0.676874i \(-0.236666\pi\)
−0.954239 + 0.299044i \(0.903332\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 17.0514 + 29.5339i 0.851507 + 1.47485i 0.879848 + 0.475256i \(0.157644\pi\)
−0.0283402 + 0.999598i \(0.509022\pi\)
\(402\) 0 0
\(403\) −15.6486 + 27.1042i −0.779514 + 1.35016i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.939346 −0.0465616
\(408\) 0 0
\(409\) 3.98214 6.89726i 0.196904 0.341048i −0.750619 0.660735i \(-0.770245\pi\)
0.947523 + 0.319688i \(0.103578\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.29199 17.1637i 0.260402 0.844571i
\(414\) 0 0
\(415\) −0.0141870 0.0245726i −0.000696413 0.00120622i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −22.4355 −1.09605 −0.548024 0.836463i \(-0.684620\pi\)
−0.548024 + 0.836463i \(0.684620\pi\)
\(420\) 0 0
\(421\) −32.5821 −1.58795 −0.793977 0.607948i \(-0.791993\pi\)
−0.793977 + 0.607948i \(0.791993\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.91269 + 6.77699i 0.189794 + 0.328732i
\(426\) 0 0
\(427\) −10.6127 11.4349i −0.513584 0.553375i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −11.2666 + 19.5143i −0.542694 + 0.939973i 0.456054 + 0.889952i \(0.349262\pi\)
−0.998748 + 0.0500212i \(0.984071\pi\)
\(432\) 0 0
\(433\) 11.1868 0.537602 0.268801 0.963196i \(-0.413373\pi\)
0.268801 + 0.963196i \(0.413373\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −30.5982 + 52.9976i −1.46371 + 2.53522i
\(438\) 0 0
\(439\) −3.78178 6.55023i −0.180494 0.312625i 0.761555 0.648101i \(-0.224436\pi\)
−0.942049 + 0.335475i \(0.891103\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.81384 3.14166i −0.0861781 0.149265i 0.819715 0.572772i \(-0.194132\pi\)
−0.905893 + 0.423507i \(0.860799\pi\)
\(444\) 0 0
\(445\) −10.3448 + 17.9178i −0.490393 + 0.849385i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5.04851 0.238254 0.119127 0.992879i \(-0.461990\pi\)
0.119127 + 0.992879i \(0.461990\pi\)
\(450\) 0 0
\(451\) 5.07041 8.78220i 0.238756 0.413538i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −7.53942 8.12355i −0.353453 0.380838i
\(456\) 0 0
\(457\) −12.0564 20.8822i −0.563973 0.976830i −0.997144 0.0755182i \(-0.975939\pi\)
0.433172 0.901311i \(-0.357394\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.5032 0.489184 0.244592 0.969626i \(-0.421346\pi\)
0.244592 + 0.969626i \(0.421346\pi\)
\(462\) 0 0
\(463\) 3.64242 0.169277 0.0846387 0.996412i \(-0.473026\pi\)
0.0846387 + 0.996412i \(0.473026\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −15.9933 27.7012i −0.740082 1.28186i −0.952457 0.304672i \(-0.901453\pi\)
0.212375 0.977188i \(-0.431880\pi\)
\(468\) 0 0
\(469\) −7.80508 + 25.3145i −0.360405 + 1.16892i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −10.8843 + 18.8521i −0.500459 + 0.866820i
\(474\) 0 0
\(475\) −22.6631 −1.03986
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 17.3613 30.0706i 0.793257 1.37396i −0.130683 0.991424i \(-0.541717\pi\)
0.923940 0.382537i \(-0.124950\pi\)
\(480\) 0 0
\(481\) 0.280657 + 0.486113i 0.0127969 + 0.0221648i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.11686 + 10.5947i 0.277752 + 0.481081i
\(486\) 0 0
\(487\) −17.9411 + 31.0749i −0.812988 + 1.40814i 0.0977757 + 0.995208i \(0.468827\pi\)
−0.910764 + 0.412928i \(0.864506\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0.0855589 0.00386122 0.00193061 0.999998i \(-0.499385\pi\)
0.00193061 + 0.999998i \(0.499385\pi\)
\(492\) 0 0
\(493\) 9.01981 15.6228i 0.406232 0.703614i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −20.2781 + 4.63098i −0.909598 + 0.207728i
\(498\) 0 0
\(499\) 6.27842 + 10.8745i 0.281061 + 0.486811i 0.971646 0.236439i \(-0.0759805\pi\)
−0.690586 + 0.723251i \(0.742647\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 42.8822 1.91202 0.956011 0.293332i \(-0.0947643\pi\)
0.956011 + 0.293332i \(0.0947643\pi\)
\(504\) 0 0
\(505\) 15.6976 0.698536
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 7.48102 + 12.9575i 0.331590 + 0.574331i 0.982824 0.184546i \(-0.0590815\pi\)
−0.651234 + 0.758877i \(0.725748\pi\)
\(510\) 0 0
\(511\) 1.39430 4.52220i 0.0616803 0.200050i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7.61799 13.1948i 0.335689 0.581430i
\(516\) 0 0
\(517\) 46.6169 2.05021
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 18.8479 32.6454i 0.825740 1.43022i −0.0756130 0.997137i \(-0.524091\pi\)
0.901353 0.433086i \(-0.142575\pi\)
\(522\) 0 0
\(523\) −0.707999 1.22629i −0.0309586 0.0536219i 0.850131 0.526571i \(-0.176523\pi\)
−0.881090 + 0.472949i \(0.843189\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 13.6986 + 23.7267i 0.596721 + 1.03355i
\(528\) 0 0
\(529\) −21.5351 + 37.2999i −0.936310 + 1.62174i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −6.05973 −0.262476
\(534\) 0 0
\(535\) −11.5920 + 20.0779i −0.501164 + 0.868042i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.59114 34.6911i 0.111608 1.49425i
\(540\) 0 0
\(541\) −3.35266 5.80697i −0.144142 0.249661i 0.784911 0.619609i \(-0.212709\pi\)
−0.929052 + 0.369948i \(0.879376\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 16.2912 0.697840
\(546\) 0 0
\(547\) 31.6351 1.35262 0.676309 0.736618i \(-0.263578\pi\)
0.676309 + 0.736618i \(0.263578\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 26.1223 + 45.2451i 1.11285 + 1.92751i
\(552\) 0 0
\(553\) −3.07326 3.31137i −0.130688 0.140814i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −13.6007 + 23.5572i −0.576282 + 0.998149i 0.419620 + 0.907700i \(0.362164\pi\)
−0.995901 + 0.0904489i \(0.971170\pi\)
\(558\) 0 0
\(559\) 13.0080 0.550179
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.15118 1.99390i 0.0485163 0.0840327i −0.840747 0.541428i \(-0.817884\pi\)
0.889264 + 0.457395i \(0.151217\pi\)
\(564\) 0 0
\(565\) −0.832989 1.44278i −0.0350441 0.0606982i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −16.9737 29.3992i −0.711573 1.23248i −0.964267 0.264934i \(-0.914650\pi\)
0.252694 0.967546i \(-0.418683\pi\)
\(570\) 0 0
\(571\) −0.114623 + 0.198532i −0.00479681 + 0.00830832i −0.868414 0.495840i \(-0.834860\pi\)
0.863617 + 0.504148i \(0.168194\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −24.4681 −1.02039
\(576\) 0 0
\(577\) −11.5733 + 20.0455i −0.481802 + 0.834505i −0.999782 0.0208877i \(-0.993351\pi\)
0.517980 + 0.855393i \(0.326684\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.0518832 + 0.0118487i −0.00215248 + 0.000491568i
\(582\) 0 0
\(583\) 34.5561 + 59.8529i 1.43117 + 2.47885i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −37.3477 −1.54150 −0.770752 0.637135i \(-0.780119\pi\)
−0.770752 + 0.637135i \(0.780119\pi\)
\(588\) 0 0
\(589\) −79.3452 −3.26936
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −10.1975 17.6626i −0.418761 0.725315i 0.577054 0.816706i \(-0.304202\pi\)
−0.995815 + 0.0913907i \(0.970869\pi\)
\(594\) 0 0
\(595\) −9.45848 + 2.16006i −0.387760 + 0.0885540i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −12.3956 + 21.4698i −0.506470 + 0.877232i 0.493502 + 0.869745i \(0.335717\pi\)
−0.999972 + 0.00748717i \(0.997617\pi\)
\(600\) 0 0
\(601\) 46.0881 1.87997 0.939987 0.341210i \(-0.110837\pi\)
0.939987 + 0.341210i \(0.110837\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9.66094 16.7332i 0.392773 0.680303i
\(606\) 0 0
\(607\) 11.8399 + 20.5073i 0.480566 + 0.832365i 0.999751 0.0222967i \(-0.00709786\pi\)
−0.519185 + 0.854662i \(0.673765\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −13.9282 24.1243i −0.563473 0.975965i
\(612\) 0 0
\(613\) 11.2993 19.5710i 0.456376 0.790467i −0.542390 0.840127i \(-0.682480\pi\)
0.998766 + 0.0496599i \(0.0158138\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 19.2593 0.775349 0.387675 0.921796i \(-0.373278\pi\)
0.387675 + 0.921796i \(0.373278\pi\)
\(618\) 0 0
\(619\) 1.28066 2.21816i 0.0514740 0.0891555i −0.839140 0.543915i \(-0.816941\pi\)
0.890614 + 0.454759i \(0.150275\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 26.3983 + 28.4436i 1.05763 + 1.13957i
\(624\) 0 0
\(625\) 0.443780 + 0.768650i 0.0177512 + 0.0307460i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.491368 0.0195921
\(630\) 0 0
\(631\) −23.3806 −0.930767 −0.465384 0.885109i \(-0.654084\pi\)
−0.465384 + 0.885109i \(0.654084\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6.46682 + 11.2009i 0.256628 + 0.444492i
\(636\) 0 0
\(637\) −18.7269 + 9.02407i −0.741985 + 0.357547i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −5.39784 + 9.34933i −0.213202 + 0.369277i −0.952715 0.303866i \(-0.901723\pi\)
0.739513 + 0.673142i \(0.235056\pi\)
\(642\) 0 0
\(643\) −1.56705 −0.0617983 −0.0308991 0.999523i \(-0.509837\pi\)
−0.0308991 + 0.999523i \(0.509837\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 14.7966 25.6285i 0.581716 1.00756i −0.413560 0.910477i \(-0.635715\pi\)
0.995276 0.0970851i \(-0.0309519\pi\)
\(648\) 0 0
\(649\) −16.8686 29.2173i −0.662152 1.14688i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −19.3696 33.5491i −0.757991 1.31288i −0.943874 0.330307i \(-0.892848\pi\)
0.185883 0.982572i \(-0.440486\pi\)
\(654\) 0 0
\(655\) 5.42036 9.38834i 0.211791 0.366833i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 28.1465 1.09643 0.548216 0.836337i \(-0.315307\pi\)
0.548216 + 0.836337i \(0.315307\pi\)
\(660\) 0 0
\(661\) −13.7431 + 23.8038i −0.534546 + 0.925861i 0.464639 + 0.885500i \(0.346184\pi\)
−0.999185 + 0.0403609i \(0.987149\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 8.27872 26.8507i 0.321035 1.04122i
\(666\) 0 0
\(667\) 28.2028 + 48.8486i 1.09202 + 1.89143i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −29.3040 −1.13127
\(672\) 0 0
\(673\) −10.9167 −0.420807 −0.210404 0.977615i \(-0.567478\pi\)
−0.210404 + 0.977615i \(0.567478\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −9.57281 16.5806i −0.367913 0.637244i 0.621326 0.783552i \(-0.286594\pi\)
−0.989239 + 0.146308i \(0.953261\pi\)
\(678\) 0 0
\(679\) 22.3699 5.10869i 0.858479 0.196054i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −2.60854 + 4.51812i −0.0998130 + 0.172881i −0.911607 0.411063i \(-0.865158\pi\)
0.811794 + 0.583944i \(0.198491\pi\)
\(684\) 0 0
\(685\) 6.73408 0.257296
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 20.6493 35.7656i 0.786675 1.36256i
\(690\) 0 0
\(691\) −16.2184 28.0910i −0.616976 1.06863i −0.990034 0.140826i \(-0.955024\pi\)
0.373059 0.927808i \(-0.378309\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 14.7241 + 25.5030i 0.558519 + 0.967383i
\(696\) 0 0
\(697\) −2.65231 + 4.59393i −0.100463 + 0.174008i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −15.0981 −0.570246 −0.285123 0.958491i \(-0.592034\pi\)
−0.285123 + 0.958491i \(0.592034\pi\)
\(702\) 0 0
\(703\) −0.711525 + 1.23240i −0.0268357 + 0.0464808i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8.67497 28.1359i 0.326256 1.05816i
\(708\) 0 0
\(709\) 4.50736 + 7.80697i 0.169277 + 0.293197i 0.938166 0.346186i \(-0.112523\pi\)
−0.768889 + 0.639383i \(0.779190\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −85.6645 −3.20816
\(714\) 0 0
\(715\) −20.8180 −0.778550
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 13.2753 + 22.9934i 0.495084 + 0.857510i 0.999984 0.00566774i \(-0.00180411\pi\)
−0.504900 + 0.863178i \(0.668471\pi\)
\(720\) 0 0
\(721\) −19.4399 20.9460i −0.723978 0.780070i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −10.4445 + 18.0903i −0.387897 + 0.671858i
\(726\) 0 0
\(727\) −9.68517 −0.359203 −0.179602 0.983739i \(-0.557481\pi\)
−0.179602 + 0.983739i \(0.557481\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.69351 9.86144i 0.210582 0.364739i
\(732\) 0 0
\(733\) −4.23676 7.33828i −0.156488 0.271046i 0.777112 0.629363i \(-0.216684\pi\)
−0.933600 + 0.358317i \(0.883351\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 24.8793 + 43.0922i 0.916441 + 1.58732i
\(738\) 0 0
\(739\) −4.58445 + 7.94050i −0.168642 + 0.292096i −0.937943 0.346791i \(-0.887271\pi\)
0.769301 + 0.638887i \(0.220605\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −11.6022 −0.425642 −0.212821 0.977091i \(-0.568265\pi\)
−0.212821 + 0.977091i \(0.568265\pi\)
\(744\) 0 0
\(745\) −8.32329 + 14.4164i −0.304942 + 0.528175i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 29.5808 + 31.8726i 1.08086 + 1.16460i
\(750\) 0 0
\(751\) 1.92515 + 3.33445i 0.0702496 + 0.121676i 0.899011 0.437927i \(-0.144287\pi\)
−0.828761 + 0.559603i \(0.810954\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 9.90616 0.360522
\(756\) 0 0
\(757\) 2.92720 0.106391 0.0531955 0.998584i \(-0.483059\pi\)
0.0531955 + 0.998584i \(0.483059\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3.15470 + 5.46410i 0.114358 + 0.198074i 0.917523 0.397683i \(-0.130186\pi\)
−0.803165 + 0.595757i \(0.796852\pi\)
\(762\) 0 0
\(763\) 9.00301 29.1998i 0.325931 1.05710i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −10.0800 + 17.4591i −0.363968 + 0.630411i
\(768\) 0 0
\(769\) 24.8617 0.896537 0.448269 0.893899i \(-0.352041\pi\)
0.448269 + 0.893899i \(0.352041\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −7.01982 + 12.1587i −0.252485 + 0.437318i −0.964209 0.265142i \(-0.914581\pi\)
0.711724 + 0.702459i \(0.247915\pi\)
\(774\) 0 0
\(775\) −15.8623 27.4742i −0.569789 0.986903i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −7.68135 13.3045i −0.275213 0.476683i
\(780\) 0 0
\(781\) −19.5351 + 33.8358i −0.699022 + 1.21074i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −9.41888 −0.336174
\(786\) 0 0
\(787\) 12.6897 21.9792i 0.452338 0.783473i −0.546192 0.837660i \(-0.683923\pi\)
0.998531 + 0.0541865i \(0.0172566\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −3.04632 + 0.695697i −0.108315 + 0.0247361i
\(792\) 0 0
\(793\) 8.75544 + 15.1649i 0.310915 + 0.538520i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 19.1890 0.679710 0.339855 0.940478i \(-0.389622\pi\)
0.339855 + 0.940478i \(0.389622\pi\)
\(798\) 0 0
\(799\) −24.3851 −0.862682
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −4.44445 7.69802i −0.156841 0.271657i
\(804\) 0 0
\(805\) 8.93806 28.9892i 0.315025 1.02173i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0.221134 0.383016i 0.00777467 0.0134661i −0.862112 0.506718i \(-0.830859\pi\)
0.869887 + 0.493252i \(0.164192\pi\)
\(810\) 0 0
\(811\) 28.1510 0.988516 0.494258 0.869315i \(-0.335440\pi\)
0.494258 + 0.869315i \(0.335440\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0.239612 0.415021i 0.00839326 0.0145376i
\(816\) 0 0
\(817\) 16.4890 + 28.5597i 0.576876 + 0.999179i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −4.26646 7.38972i −0.148900 0.257903i 0.781921 0.623378i \(-0.214240\pi\)
−0.930821 + 0.365475i \(0.880907\pi\)
\(822\) 0 0
\(823\) 14.7590 25.5633i 0.514465 0.891080i −0.485394 0.874296i \(-0.661324\pi\)
0.999859 0.0167842i \(-0.00534282\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −35.7222 −1.24218 −0.621092 0.783738i \(-0.713311\pi\)
−0.621092 + 0.783738i \(0.713311\pi\)
\(828\) 0 0
\(829\) −25.8399 + 44.7560i −0.897456 + 1.55444i −0.0667215 + 0.997772i \(0.521254\pi\)
−0.830735 + 0.556668i \(0.812079\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.35541 + 18.1467i −0.0469622 + 0.628748i
\(834\) 0 0
\(835\) −0.632347 1.09526i −0.0218833 0.0379030i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −37.2567 −1.28624 −0.643122 0.765763i \(-0.722361\pi\)
−0.643122 + 0.765763i \(0.722361\pi\)
\(840\) 0 0
\(841\) 19.1545 0.660501
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.94889 5.10762i −0.101445 0.175708i
\(846\) 0 0
\(847\) −24.6531 26.5632i −0.847091 0.912722i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.768194 + 1.33055i −0.0263333 + 0.0456107i
\(852\) 0 0
\(853\) −12.0623 −0.413006 −0.206503 0.978446i \(-0.566208\pi\)
−0.206503 + 0.978446i \(0.566208\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14.1047 24.4301i 0.481808 0.834515i −0.517974 0.855396i \(-0.673314\pi\)
0.999782 + 0.0208808i \(0.00664705\pi\)
\(858\) 0 0
\(859\) 25.7641 + 44.6247i 0.879059 + 1.52257i 0.852375 + 0.522930i \(0.175161\pi\)
0.0266833 + 0.999644i \(0.491505\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.57423 2.72664i −0.0535873 0.0928159i 0.837987 0.545690i \(-0.183732\pi\)
−0.891575 + 0.452874i \(0.850399\pi\)
\(864\) 0 0
\(865\) 3.41076 5.90762i 0.115969 0.200865i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −8.48597 −0.287867
\(870\) 0 0
\(871\) 14.8669 25.7501i 0.503744 0.872510i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 29.1445 6.65582i 0.985264 0.225008i
\(876\) 0 0
\(877\) −1.27555 2.20932i −0.0430723 0.0746034i 0.843686 0.536838i \(-0.180381\pi\)
−0.886758 + 0.462234i \(0.847048\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −14.4378 −0.486421 −0.243210 0.969974i \(-0.578201\pi\)
−0.243210 + 0.969974i \(0.578201\pi\)
\(882\) 0 0
\(883\) 0.478915 0.0161168 0.00805839 0.999968i \(-0.497435\pi\)
0.00805839 + 0.999968i \(0.497435\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −5.62821 9.74834i −0.188977 0.327317i 0.755933 0.654649i \(-0.227184\pi\)
−0.944909 + 0.327332i \(0.893850\pi\)
\(888\) 0 0
\(889\) 23.6498 5.40097i 0.793187 0.181143i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 35.3108 61.1602i 1.18163 2.04665i
\(894\) 0 0
\(895\) −4.01920 −0.134347
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −36.5667 + 63.3355i −1.21957 + 2.11236i
\(900\) 0 0
\(901\) −18.0761 31.3088i −0.602203 1.04305i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.03047 + 1.78483i 0.0342540 + 0.0593297i
\(906\) 0 0
\(907\) −0.359496 + 0.622666i −0.0119369 + 0.0206753i −0.871932 0.489627i \(-0.837133\pi\)
0.859995 + 0.510302i \(0.170466\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 21.1779 0.701655 0.350828 0.936440i \(-0.385900\pi\)
0.350828 + 0.936440i \(0.385900\pi\)
\(912\) 0 0
\(913\) −0.0499822 + 0.0865717i −0.00165417 + 0.00286510i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −13.8319 14.9035i −0.456769 0.492158i
\(918\) 0 0
\(919\) 7.17784 + 12.4324i 0.236775 + 0.410106i 0.959787 0.280729i \(-0.0905762\pi\)
−0.723012 + 0.690835i \(0.757243\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 23.3468 0.768469
\(924\) 0 0
\(925\) −0.568977 −0.0187079
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 18.6542 + 32.3101i 0.612026 + 1.06006i 0.990899 + 0.134611i \(0.0429785\pi\)
−0.378873 + 0.925449i \(0.623688\pi\)
\(930\) 0 0
\(931\) −43.5511 29.6769i −1.42733 0.972622i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −9.11192 + 15.7823i −0.297992 + 0.516137i
\(936\) 0 0
\(937\) 50.9094 1.66314 0.831568 0.555423i \(-0.187444\pi\)
0.831568 + 0.555423i \(0.187444\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −11.9251 + 20.6550i −0.388749 + 0.673332i −0.992282 0.124006i \(-0.960426\pi\)
0.603533 + 0.797338i \(0.293759\pi\)
\(942\) 0 0
\(943\) −8.29312 14.3641i −0.270061 0.467760i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −29.3576 50.8489i −0.953994 1.65237i −0.736653 0.676271i \(-0.763595\pi\)
−0.217341 0.976096i \(-0.569738\pi\)
\(948\) 0 0
\(949\) −2.65582 + 4.60002i −0.0862116 + 0.149323i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 28.4324 0.921015 0.460507 0.887656i \(-0.347667\pi\)
0.460507 + 0.887656i \(0.347667\pi\)
\(954\) 0 0
\(955\) 3.23128 5.59674i 0.104562 0.181106i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3.72144 12.0699i 0.120172 0.389758i
\(960\) 0 0
\(961\) −40.0348 69.3424i −1.29145 2.23685i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 19.1616 0.616833
\(966\) 0 0
\(967\) −27.6931 −0.890552 −0.445276 0.895393i \(-0.646894\pi\)
−0.445276 + 0.895393i \(0.646894\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −0.510672 0.884510i −0.0163882 0.0283853i 0.857715 0.514125i \(-0.171883\pi\)
−0.874103 + 0.485740i \(0.838550\pi\)
\(972\) 0 0
\(973\) 53.8476 12.2973i 1.72627 0.394235i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 18.9018 32.7389i 0.604723 1.04741i −0.387372 0.921923i \(-0.626617\pi\)
0.992095 0.125488i \(-0.0400495\pi\)
\(978\) 0 0
\(979\) 72.8918 2.32963
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −8.19366 + 14.1918i −0.261337 + 0.452649i −0.966598 0.256299i \(-0.917497\pi\)
0.705260 + 0.708948i \(0.250830\pi\)
\(984\) 0 0
\(985\) −9.44430 16.3580i −0.300920 0.521209i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 17.8022 + 30.8343i 0.566077 + 0.980475i
\(990\) 0 0
\(991\) 13.7067 23.7408i 0.435409 0.754150i −0.561920 0.827192i \(-0.689937\pi\)
0.997329 + 0.0730412i \(0.0232704\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.08679 0.0344535
\(996\) 0 0
\(997\) 7.67099 13.2865i 0.242943 0.420789i −0.718609 0.695415i \(-0.755221\pi\)
0.961551 + 0.274626i \(0.0885540\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.k.c.1621.3 yes 8
3.2 odd 2 2268.2.k.d.1621.2 yes 8
7.2 even 3 inner 2268.2.k.c.1297.3 8
9.2 odd 6 2268.2.l.l.109.3 8
9.4 even 3 2268.2.i.l.865.3 8
9.5 odd 6 2268.2.i.m.865.2 8
9.7 even 3 2268.2.l.m.109.2 8
21.2 odd 6 2268.2.k.d.1297.2 yes 8
63.2 odd 6 2268.2.i.m.2053.2 8
63.16 even 3 2268.2.i.l.2053.3 8
63.23 odd 6 2268.2.l.l.541.3 8
63.58 even 3 2268.2.l.m.541.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2268.2.i.l.865.3 8 9.4 even 3
2268.2.i.l.2053.3 8 63.16 even 3
2268.2.i.m.865.2 8 9.5 odd 6
2268.2.i.m.2053.2 8 63.2 odd 6
2268.2.k.c.1297.3 8 7.2 even 3 inner
2268.2.k.c.1621.3 yes 8 1.1 even 1 trivial
2268.2.k.d.1297.2 yes 8 21.2 odd 6
2268.2.k.d.1621.2 yes 8 3.2 odd 2
2268.2.l.l.109.3 8 9.2 odd 6
2268.2.l.l.541.3 8 63.23 odd 6
2268.2.l.m.109.2 8 9.7 even 3
2268.2.l.m.541.2 8 63.58 even 3