L(s) = 1 | − 0.300·2-s + 3·3-s − 7.90·4-s − 20.3·5-s − 0.900·6-s − 7·7-s + 4.77·8-s + 9·9-s + 6.12·10-s + 11·11-s − 23.7·12-s + 14.2·13-s + 2.10·14-s − 61.1·15-s + 61.8·16-s + 137.·17-s − 2.70·18-s − 44.1·19-s + 161.·20-s − 21·21-s − 3.30·22-s + 71.7·23-s + 14.3·24-s + 290.·25-s − 4.26·26-s + 27·27-s + 55.3·28-s + ⋯ |
L(s) = 1 | − 0.106·2-s + 0.577·3-s − 0.988·4-s − 1.82·5-s − 0.0612·6-s − 0.377·7-s + 0.211·8-s + 0.333·9-s + 0.193·10-s + 0.301·11-s − 0.570·12-s + 0.303·13-s + 0.0401·14-s − 1.05·15-s + 0.966·16-s + 1.96·17-s − 0.0353·18-s − 0.533·19-s + 1.80·20-s − 0.218·21-s − 0.0319·22-s + 0.650·23-s + 0.121·24-s + 2.32·25-s − 0.0321·26-s + 0.192·27-s + 0.373·28-s + ⋯ |
Λ(s)=(=(231s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(231s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.036816766 |
L(21) |
≈ |
1.036816766 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3T |
| 7 | 1+7T |
| 11 | 1−11T |
good | 2 | 1+0.300T+8T2 |
| 5 | 1+20.3T+125T2 |
| 13 | 1−14.2T+2.19e3T2 |
| 17 | 1−137.T+4.91e3T2 |
| 19 | 1+44.1T+6.85e3T2 |
| 23 | 1−71.7T+1.21e4T2 |
| 29 | 1+59.5T+2.43e4T2 |
| 31 | 1+207.T+2.97e4T2 |
| 37 | 1−126.T+5.06e4T2 |
| 41 | 1+283.T+6.89e4T2 |
| 43 | 1+179.T+7.95e4T2 |
| 47 | 1−94.8T+1.03e5T2 |
| 53 | 1−727.T+1.48e5T2 |
| 59 | 1−677.T+2.05e5T2 |
| 61 | 1−210.T+2.26e5T2 |
| 67 | 1+428.T+3.00e5T2 |
| 71 | 1−419.T+3.57e5T2 |
| 73 | 1−921.T+3.89e5T2 |
| 79 | 1−895.T+4.93e5T2 |
| 83 | 1−1.18e3T+5.71e5T2 |
| 89 | 1−8.28T+7.04e5T2 |
| 97 | 1+828.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.95558528586642572122588559467, −10.74123681164674524083411686850, −9.636148570415690384731233758894, −8.626543140402445642647155194021, −7.980475411515572580928149548201, −7.09221741471787987251017554944, −5.24746677805671612354394371611, −3.90085668211618254797063622590, −3.43984794539157916794469039252, −0.76048143786217510814193532829,
0.76048143786217510814193532829, 3.43984794539157916794469039252, 3.90085668211618254797063622590, 5.24746677805671612354394371611, 7.09221741471787987251017554944, 7.980475411515572580928149548201, 8.626543140402445642647155194021, 9.636148570415690384731233758894, 10.74123681164674524083411686850, 11.95558528586642572122588559467