L(s) = 1 | + (−1.78 + 0.556i)2-s + (2.05 − 1.41i)4-s + (0.0603 + 0.998i)5-s + (−1.72 + 2.20i)8-s + (−0.663 − 1.74i)10-s + (0.970 − 2.56i)16-s + (0.219 − 1.81i)17-s + (−1.68 + 0.308i)19-s + (1.53 + 1.96i)20-s + (−1.37 − 1.37i)23-s + (−0.992 + 0.120i)25-s + (−0.987 − 1.63i)31-s + (−0.140 + 2.31i)32-s + (0.614 + 3.35i)34-s + (2.83 − 1.48i)38-s + ⋯ |
L(s) = 1 | + (−1.78 + 0.556i)2-s + (2.05 − 1.41i)4-s + (0.0603 + 0.998i)5-s + (−1.72 + 2.20i)8-s + (−0.663 − 1.74i)10-s + (0.970 − 2.56i)16-s + (0.219 − 1.81i)17-s + (−1.68 + 0.308i)19-s + (1.53 + 1.96i)20-s + (−1.37 − 1.37i)23-s + (−0.992 + 0.120i)25-s + (−0.987 − 1.63i)31-s + (−0.140 + 2.31i)32-s + (0.614 + 3.35i)34-s + (2.83 − 1.48i)38-s + ⋯ |
Λ(s)=(=(2385s/2ΓC(s)L(s)(0.129+0.991i)Λ(1−s)
Λ(s)=(=(2385s/2ΓC(s)L(s)(0.129+0.991i)Λ(1−s)
Degree: |
2 |
Conductor: |
2385
= 32⋅5⋅53
|
Sign: |
0.129+0.991i
|
Analytic conductor: |
1.19027 |
Root analytic conductor: |
1.09099 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2385(154,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2385, ( :0), 0.129+0.991i)
|
Particular Values
L(21) |
≈ |
0.2055162721 |
L(21) |
≈ |
0.2055162721 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(−0.0603−0.998i)T |
| 53 | 1+(0.616+0.787i)T |
good | 2 | 1+(1.78−0.556i)T+(0.822−0.568i)T2 |
| 7 | 1+(0.568+0.822i)T2 |
| 11 | 1+(−0.885+0.464i)T2 |
| 13 | 1+(0.354+0.935i)T2 |
| 17 | 1+(−0.219+1.81i)T+(−0.970−0.239i)T2 |
| 19 | 1+(1.68−0.308i)T+(0.935−0.354i)T2 |
| 23 | 1+(1.37+1.37i)T+iT2 |
| 29 | 1+(−0.885−0.464i)T2 |
| 31 | 1+(0.987+1.63i)T+(−0.464+0.885i)T2 |
| 37 | 1+(−0.748−0.663i)T2 |
| 41 | 1+(0.464+0.885i)T2 |
| 43 | 1+(−0.748+0.663i)T2 |
| 47 | 1+(−0.239−0.269i)T+(−0.120+0.992i)T2 |
| 59 | 1+(−0.120+0.992i)T2 |
| 61 | 1+(−0.970−0.760i)T+(0.239+0.970i)T2 |
| 67 | 1+(−0.935−0.354i)T2 |
| 71 | 1+(0.663+0.748i)T2 |
| 73 | 1+(−0.239+0.970i)T2 |
| 79 | 1+(−0.115−0.0359i)T+(0.822+0.568i)T2 |
| 83 | 1+(1.16−1.16i)T−iT2 |
| 89 | 1+(−0.970−0.239i)T2 |
| 97 | 1+(−0.120−0.992i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.948538778457495403352258606782, −8.151097723784066724647983399181, −7.60982921793906252795593484568, −6.78479906801186691114654375482, −6.35660492035544300983435072056, −5.50803839378407077116692890077, −4.07437749166031597566424699881, −2.59926199746871322793953336802, −2.04824447786473352903454634539, −0.23502453722026860380304678044,
1.50186613542306795558821365454, 1.96857504492954019451413168266, 3.42753698681277905194400625105, 4.27502985016607058597398762866, 5.68917092172578848183781194472, 6.43576954654920730912606816473, 7.43769744098338984922707761659, 8.250208583872593923696388521630, 8.524243151628716162490632797233, 9.273029015241460765326053100967