Properties

Label 2-2385-265.74-c0-0-0
Degree 22
Conductor 23852385
Sign 0.1290.991i0.129 - 0.991i
Analytic cond. 1.190271.19027
Root an. cond. 1.090991.09099
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.78 − 0.556i)2-s + (2.05 + 1.41i)4-s + (0.0603 − 0.998i)5-s + (−1.72 − 2.20i)8-s + (−0.663 + 1.74i)10-s + (0.970 + 2.56i)16-s + (0.219 + 1.81i)17-s + (−1.68 − 0.308i)19-s + (1.53 − 1.96i)20-s + (−1.37 + 1.37i)23-s + (−0.992 − 0.120i)25-s + (−0.987 + 1.63i)31-s + (−0.140 − 2.31i)32-s + (0.614 − 3.35i)34-s + (2.83 + 1.48i)38-s + ⋯
L(s)  = 1  + (−1.78 − 0.556i)2-s + (2.05 + 1.41i)4-s + (0.0603 − 0.998i)5-s + (−1.72 − 2.20i)8-s + (−0.663 + 1.74i)10-s + (0.970 + 2.56i)16-s + (0.219 + 1.81i)17-s + (−1.68 − 0.308i)19-s + (1.53 − 1.96i)20-s + (−1.37 + 1.37i)23-s + (−0.992 − 0.120i)25-s + (−0.987 + 1.63i)31-s + (−0.140 − 2.31i)32-s + (0.614 − 3.35i)34-s + (2.83 + 1.48i)38-s + ⋯

Functional equation

Λ(s)=(2385s/2ΓC(s)L(s)=((0.1290.991i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2385 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.129 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(2385s/2ΓC(s)L(s)=((0.1290.991i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2385 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.129 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 23852385    =    325533^{2} \cdot 5 \cdot 53
Sign: 0.1290.991i0.129 - 0.991i
Analytic conductor: 1.190271.19027
Root analytic conductor: 1.090991.09099
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ2385(604,)\chi_{2385} (604, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 2385, ( :0), 0.1290.991i)(2,\ 2385,\ (\ :0),\ 0.129 - 0.991i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.20551627210.2055162721
L(12)L(\frac12) \approx 0.20551627210.2055162721
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
5 1+(0.0603+0.998i)T 1 + (-0.0603 + 0.998i)T
53 1+(0.6160.787i)T 1 + (0.616 - 0.787i)T
good2 1+(1.78+0.556i)T+(0.822+0.568i)T2 1 + (1.78 + 0.556i)T + (0.822 + 0.568i)T^{2}
7 1+(0.5680.822i)T2 1 + (0.568 - 0.822i)T^{2}
11 1+(0.8850.464i)T2 1 + (-0.885 - 0.464i)T^{2}
13 1+(0.3540.935i)T2 1 + (0.354 - 0.935i)T^{2}
17 1+(0.2191.81i)T+(0.970+0.239i)T2 1 + (-0.219 - 1.81i)T + (-0.970 + 0.239i)T^{2}
19 1+(1.68+0.308i)T+(0.935+0.354i)T2 1 + (1.68 + 0.308i)T + (0.935 + 0.354i)T^{2}
23 1+(1.371.37i)TiT2 1 + (1.37 - 1.37i)T - iT^{2}
29 1+(0.885+0.464i)T2 1 + (-0.885 + 0.464i)T^{2}
31 1+(0.9871.63i)T+(0.4640.885i)T2 1 + (0.987 - 1.63i)T + (-0.464 - 0.885i)T^{2}
37 1+(0.748+0.663i)T2 1 + (-0.748 + 0.663i)T^{2}
41 1+(0.4640.885i)T2 1 + (0.464 - 0.885i)T^{2}
43 1+(0.7480.663i)T2 1 + (-0.748 - 0.663i)T^{2}
47 1+(0.239+0.269i)T+(0.1200.992i)T2 1 + (-0.239 + 0.269i)T + (-0.120 - 0.992i)T^{2}
59 1+(0.1200.992i)T2 1 + (-0.120 - 0.992i)T^{2}
61 1+(0.970+0.760i)T+(0.2390.970i)T2 1 + (-0.970 + 0.760i)T + (0.239 - 0.970i)T^{2}
67 1+(0.935+0.354i)T2 1 + (-0.935 + 0.354i)T^{2}
71 1+(0.6630.748i)T2 1 + (0.663 - 0.748i)T^{2}
73 1+(0.2390.970i)T2 1 + (-0.239 - 0.970i)T^{2}
79 1+(0.115+0.0359i)T+(0.8220.568i)T2 1 + (-0.115 + 0.0359i)T + (0.822 - 0.568i)T^{2}
83 1+(1.16+1.16i)T+iT2 1 + (1.16 + 1.16i)T + iT^{2}
89 1+(0.970+0.239i)T2 1 + (-0.970 + 0.239i)T^{2}
97 1+(0.120+0.992i)T2 1 + (-0.120 + 0.992i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.273029015241460765326053100967, −8.524243151628716162490632797233, −8.250208583872593923696388521630, −7.43769744098338984922707761659, −6.43576954654920730912606816473, −5.68917092172578848183781194472, −4.27502985016607058597398762866, −3.42753698681277905194400625105, −1.96857504492954019451413168266, −1.50186613542306795558821365454, 0.23502453722026860380304678044, 2.04824447786473352903454634539, 2.59926199746871322793953336802, 4.07437749166031597566424699881, 5.50803839378407077116692890077, 6.35660492035544300983435072056, 6.78479906801186691114654375482, 7.60982921793906252795593484568, 8.151097723784066724647983399181, 8.948538778457495403352258606782

Graph of the ZZ-function along the critical line