L(s) = 1 | + (−1.78 − 0.556i)2-s + (2.05 + 1.41i)4-s + (0.0603 − 0.998i)5-s + (−1.72 − 2.20i)8-s + (−0.663 + 1.74i)10-s + (0.970 + 2.56i)16-s + (0.219 + 1.81i)17-s + (−1.68 − 0.308i)19-s + (1.53 − 1.96i)20-s + (−1.37 + 1.37i)23-s + (−0.992 − 0.120i)25-s + (−0.987 + 1.63i)31-s + (−0.140 − 2.31i)32-s + (0.614 − 3.35i)34-s + (2.83 + 1.48i)38-s + ⋯ |
L(s) = 1 | + (−1.78 − 0.556i)2-s + (2.05 + 1.41i)4-s + (0.0603 − 0.998i)5-s + (−1.72 − 2.20i)8-s + (−0.663 + 1.74i)10-s + (0.970 + 2.56i)16-s + (0.219 + 1.81i)17-s + (−1.68 − 0.308i)19-s + (1.53 − 1.96i)20-s + (−1.37 + 1.37i)23-s + (−0.992 − 0.120i)25-s + (−0.987 + 1.63i)31-s + (−0.140 − 2.31i)32-s + (0.614 − 3.35i)34-s + (2.83 + 1.48i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2385 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.129 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2385 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.129 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2055162721\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2055162721\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-0.0603 + 0.998i)T \) |
| 53 | \( 1 + (0.616 - 0.787i)T \) |
good | 2 | \( 1 + (1.78 + 0.556i)T + (0.822 + 0.568i)T^{2} \) |
| 7 | \( 1 + (0.568 - 0.822i)T^{2} \) |
| 11 | \( 1 + (-0.885 - 0.464i)T^{2} \) |
| 13 | \( 1 + (0.354 - 0.935i)T^{2} \) |
| 17 | \( 1 + (-0.219 - 1.81i)T + (-0.970 + 0.239i)T^{2} \) |
| 19 | \( 1 + (1.68 + 0.308i)T + (0.935 + 0.354i)T^{2} \) |
| 23 | \( 1 + (1.37 - 1.37i)T - iT^{2} \) |
| 29 | \( 1 + (-0.885 + 0.464i)T^{2} \) |
| 31 | \( 1 + (0.987 - 1.63i)T + (-0.464 - 0.885i)T^{2} \) |
| 37 | \( 1 + (-0.748 + 0.663i)T^{2} \) |
| 41 | \( 1 + (0.464 - 0.885i)T^{2} \) |
| 43 | \( 1 + (-0.748 - 0.663i)T^{2} \) |
| 47 | \( 1 + (-0.239 + 0.269i)T + (-0.120 - 0.992i)T^{2} \) |
| 59 | \( 1 + (-0.120 - 0.992i)T^{2} \) |
| 61 | \( 1 + (-0.970 + 0.760i)T + (0.239 - 0.970i)T^{2} \) |
| 67 | \( 1 + (-0.935 + 0.354i)T^{2} \) |
| 71 | \( 1 + (0.663 - 0.748i)T^{2} \) |
| 73 | \( 1 + (-0.239 - 0.970i)T^{2} \) |
| 79 | \( 1 + (-0.115 + 0.0359i)T + (0.822 - 0.568i)T^{2} \) |
| 83 | \( 1 + (1.16 + 1.16i)T + iT^{2} \) |
| 89 | \( 1 + (-0.970 + 0.239i)T^{2} \) |
| 97 | \( 1 + (-0.120 + 0.992i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.273029015241460765326053100967, −8.524243151628716162490632797233, −8.250208583872593923696388521630, −7.43769744098338984922707761659, −6.43576954654920730912606816473, −5.68917092172578848183781194472, −4.27502985016607058597398762866, −3.42753698681277905194400625105, −1.96857504492954019451413168266, −1.50186613542306795558821365454,
0.23502453722026860380304678044, 2.04824447786473352903454634539, 2.59926199746871322793953336802, 4.07437749166031597566424699881, 5.50803839378407077116692890077, 6.35660492035544300983435072056, 6.78479906801186691114654375482, 7.60982921793906252795593484568, 8.151097723784066724647983399181, 8.948538778457495403352258606782