L(s) = 1 | + (0.0288 + 0.477i)2-s + (0.765 − 0.0929i)4-s + (0.297 − 0.954i)5-s + (0.152 + 0.833i)8-s + (0.464 + 0.114i)10-s + (0.354 − 0.0874i)16-s + (−0.587 − 0.851i)17-s + (1.12 + 1.43i)19-s + (0.138 − 0.758i)20-s + (0.501 − 0.501i)23-s + (−0.822 − 0.568i)25-s + (−0.0495 − 0.110i)31-s + (0.304 + 0.976i)32-s + (0.389 − 0.305i)34-s + (−0.653 + 0.578i)38-s + ⋯ |
L(s) = 1 | + (0.0288 + 0.477i)2-s + (0.765 − 0.0929i)4-s + (0.297 − 0.954i)5-s + (0.152 + 0.833i)8-s + (0.464 + 0.114i)10-s + (0.354 − 0.0874i)16-s + (−0.587 − 0.851i)17-s + (1.12 + 1.43i)19-s + (0.138 − 0.758i)20-s + (0.501 − 0.501i)23-s + (−0.822 − 0.568i)25-s + (−0.0495 − 0.110i)31-s + (0.304 + 0.976i)32-s + (0.389 − 0.305i)34-s + (−0.653 + 0.578i)38-s + ⋯ |
Λ(s)=(=(2385s/2ΓC(s)L(s)(0.997−0.0759i)Λ(1−s)
Λ(s)=(=(2385s/2ΓC(s)L(s)(0.997−0.0759i)Λ(1−s)
Degree: |
2 |
Conductor: |
2385
= 32⋅5⋅53
|
Sign: |
0.997−0.0759i
|
Analytic conductor: |
1.19027 |
Root analytic conductor: |
1.09099 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2385(2359,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2385, ( :0), 0.997−0.0759i)
|
Particular Values
L(21) |
≈ |
1.614870438 |
L(21) |
≈ |
1.614870438 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(−0.297+0.954i)T |
| 53 | 1+(−0.180+0.983i)T |
good | 2 | 1+(−0.0288−0.477i)T+(−0.992+0.120i)T2 |
| 7 | 1+(0.120+0.992i)T2 |
| 11 | 1+(0.748−0.663i)T2 |
| 13 | 1+(0.970+0.239i)T2 |
| 17 | 1+(0.587+0.851i)T+(−0.354+0.935i)T2 |
| 19 | 1+(−1.12−1.43i)T+(−0.239+0.970i)T2 |
| 23 | 1+(−0.501+0.501i)T−iT2 |
| 29 | 1+(0.748+0.663i)T2 |
| 31 | 1+(0.0495+0.110i)T+(−0.663+0.748i)T2 |
| 37 | 1+(0.885−0.464i)T2 |
| 41 | 1+(0.663+0.748i)T2 |
| 43 | 1+(0.885+0.464i)T2 |
| 47 | 1+(0.731−1.39i)T+(−0.568−0.822i)T2 |
| 59 | 1+(−0.568−0.822i)T2 |
| 61 | 1+(−0.354+0.0649i)T+(0.935−0.354i)T2 |
| 67 | 1+(0.239+0.970i)T2 |
| 71 | 1+(−0.464+0.885i)T2 |
| 73 | 1+(−0.935−0.354i)T2 |
| 79 | 1+(−0.0359+0.593i)T+(−0.992−0.120i)T2 |
| 83 | 1+(1.40+1.40i)T+iT2 |
| 89 | 1+(−0.354+0.935i)T2 |
| 97 | 1+(−0.568+0.822i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.095244422202913345855899370981, −8.252911723942391369079267859271, −7.66313588599315745951366431442, −6.82923730374100024852736173667, −6.02861485899934860772545707563, −5.33069723766634228845611754349, −4.66250490460406919758017236712, −3.40914457385602578794060368506, −2.29312658549316063587468870372, −1.27640884005111521869596845518,
1.46442545647634123029660167782, 2.53593080436798010126784061043, 3.13997899240565897296388195960, 4.06424811876752271780018862974, 5.30840366395604191106005674429, 6.17603124532711468109967746832, 6.97105880657911668277449235371, 7.29886434450623946883850810037, 8.364414297741997352984081898520, 9.403129043148983252772540334972