L(s) = 1 | + (0.0288 + 0.477i)2-s + (0.765 − 0.0929i)4-s + (0.297 − 0.954i)5-s + (0.152 + 0.833i)8-s + (0.464 + 0.114i)10-s + (0.354 − 0.0874i)16-s + (−0.587 − 0.851i)17-s + (1.12 + 1.43i)19-s + (0.138 − 0.758i)20-s + (0.501 − 0.501i)23-s + (−0.822 − 0.568i)25-s + (−0.0495 − 0.110i)31-s + (0.304 + 0.976i)32-s + (0.389 − 0.305i)34-s + (−0.653 + 0.578i)38-s + ⋯ |
L(s) = 1 | + (0.0288 + 0.477i)2-s + (0.765 − 0.0929i)4-s + (0.297 − 0.954i)5-s + (0.152 + 0.833i)8-s + (0.464 + 0.114i)10-s + (0.354 − 0.0874i)16-s + (−0.587 − 0.851i)17-s + (1.12 + 1.43i)19-s + (0.138 − 0.758i)20-s + (0.501 − 0.501i)23-s + (−0.822 − 0.568i)25-s + (−0.0495 − 0.110i)31-s + (0.304 + 0.976i)32-s + (0.389 − 0.305i)34-s + (−0.653 + 0.578i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2385 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0759i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2385 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0759i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.614870438\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.614870438\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-0.297 + 0.954i)T \) |
| 53 | \( 1 + (-0.180 + 0.983i)T \) |
good | 2 | \( 1 + (-0.0288 - 0.477i)T + (-0.992 + 0.120i)T^{2} \) |
| 7 | \( 1 + (0.120 + 0.992i)T^{2} \) |
| 11 | \( 1 + (0.748 - 0.663i)T^{2} \) |
| 13 | \( 1 + (0.970 + 0.239i)T^{2} \) |
| 17 | \( 1 + (0.587 + 0.851i)T + (-0.354 + 0.935i)T^{2} \) |
| 19 | \( 1 + (-1.12 - 1.43i)T + (-0.239 + 0.970i)T^{2} \) |
| 23 | \( 1 + (-0.501 + 0.501i)T - iT^{2} \) |
| 29 | \( 1 + (0.748 + 0.663i)T^{2} \) |
| 31 | \( 1 + (0.0495 + 0.110i)T + (-0.663 + 0.748i)T^{2} \) |
| 37 | \( 1 + (0.885 - 0.464i)T^{2} \) |
| 41 | \( 1 + (0.663 + 0.748i)T^{2} \) |
| 43 | \( 1 + (0.885 + 0.464i)T^{2} \) |
| 47 | \( 1 + (0.731 - 1.39i)T + (-0.568 - 0.822i)T^{2} \) |
| 59 | \( 1 + (-0.568 - 0.822i)T^{2} \) |
| 61 | \( 1 + (-0.354 + 0.0649i)T + (0.935 - 0.354i)T^{2} \) |
| 67 | \( 1 + (0.239 + 0.970i)T^{2} \) |
| 71 | \( 1 + (-0.464 + 0.885i)T^{2} \) |
| 73 | \( 1 + (-0.935 - 0.354i)T^{2} \) |
| 79 | \( 1 + (-0.0359 + 0.593i)T + (-0.992 - 0.120i)T^{2} \) |
| 83 | \( 1 + (1.40 + 1.40i)T + iT^{2} \) |
| 89 | \( 1 + (-0.354 + 0.935i)T^{2} \) |
| 97 | \( 1 + (-0.568 + 0.822i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.095244422202913345855899370981, −8.252911723942391369079267859271, −7.66313588599315745951366431442, −6.82923730374100024852736173667, −6.02861485899934860772545707563, −5.33069723766634228845611754349, −4.66250490460406919758017236712, −3.40914457385602578794060368506, −2.29312658549316063587468870372, −1.27640884005111521869596845518,
1.46442545647634123029660167782, 2.53593080436798010126784061043, 3.13997899240565897296388195960, 4.06424811876752271780018862974, 5.30840366395604191106005674429, 6.17603124532711468109967746832, 6.97105880657911668277449235371, 7.29886434450623946883850810037, 8.364414297741997352984081898520, 9.403129043148983252772540334972