Properties

Label 2385.1.ca.a.2359.2
Level $2385$
Weight $1$
Character 2385.2359
Analytic conductor $1.190$
Analytic rank $0$
Dimension $48$
Projective image $D_{52}$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2385,1,Mod(19,2385)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2385, base_ring=CyclotomicField(52))
 
chi = DirichletCharacter(H, H._module([0, 26, 37]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2385.19");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2385 = 3^{2} \cdot 5 \cdot 53 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2385.ca (of order \(52\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.19027005513\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(2\) over \(\Q(\zeta_{52})\)
Coefficient field: \(\Q(\zeta_{104})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{48} - x^{44} + x^{40} - x^{36} + x^{32} - x^{28} + x^{24} - x^{20} + x^{16} - x^{12} + x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{52}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{52} - \cdots)\)

Embedding invariants

Embedding label 2359.2
Root \(0.180255 + 0.983620i\) of defining polynomial
Character \(\chi\) \(=\) 2385.2359
Dual form 2385.1.ca.a.1009.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0288990 + 0.477758i) q^{2} +(0.765291 - 0.0929232i) q^{4} +(0.297503 - 0.954721i) q^{5} +(0.152787 + 0.833730i) q^{8} +O(q^{10})\) \(q+(0.0288990 + 0.477758i) q^{2} +(0.765291 - 0.0929232i) q^{4} +(0.297503 - 0.954721i) q^{5} +(0.152787 + 0.833730i) q^{8} +(0.464723 + 0.114544i) q^{10} +(0.354605 - 0.0874023i) q^{16} +(-0.587763 - 0.851521i) q^{17} +(1.12477 + 1.43566i) q^{19} +(0.138961 - 0.758284i) q^{20} +(0.501487 - 0.501487i) q^{23} +(-0.822984 - 0.568065i) q^{25} +(-0.0495602 - 0.110118i) q^{31} +(0.304173 + 0.976124i) q^{32} +(0.389835 - 0.305417i) q^{34} +(-0.653396 + 0.578858i) q^{38} +(0.841434 + 0.102169i) q^{40} +(0.254082 + 0.225097i) q^{46} +(-0.731645 + 1.39403i) q^{47} +(-0.120537 - 0.992709i) q^{49} +(0.247614 - 0.409604i) q^{50} +(0.180255 - 0.983620i) q^{53} +(0.354605 - 0.0649838i) q^{61} +(0.0511777 - 0.0268601i) q^{62} +(-0.116077 + 0.0440221i) q^{64} +(-0.528936 - 0.597045i) q^{68} +(0.994184 + 0.994184i) q^{76} +(0.0359256 - 0.593921i) q^{79} +(0.0220513 - 0.364551i) q^{80} +(-1.40390 - 1.40390i) q^{83} +(-0.987826 + 0.307819i) q^{85} +(0.337184 - 0.430383i) q^{92} +(-0.687154 - 0.309263i) q^{94} +(1.70528 - 0.646728i) q^{95} +(0.470791 - 0.0862757i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q+O(q^{10}) \) Copy content Toggle raw display \( 48 q + 4 q^{16} - 4 q^{19} - 4 q^{31} + 4 q^{49} + 4 q^{61} + 4 q^{76} + 4 q^{79} - 4 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2385\mathbb{Z}\right)^\times\).

\(n\) \(1432\) \(1486\) \(1856\)
\(\chi(n)\) \(-1\) \(e\left(\frac{51}{52}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0288990 + 0.477758i 0.0288990 + 0.477758i 0.983620 + 0.180255i \(0.0576923\pi\)
−0.954721 + 0.297503i \(0.903846\pi\)
\(3\) 0 0
\(4\) 0.765291 0.0929232i 0.765291 0.0929232i
\(5\) 0.297503 0.954721i 0.297503 0.954721i
\(6\) 0 0
\(7\) 0 0 0.663123 0.748511i \(-0.269231\pi\)
−0.663123 + 0.748511i \(0.730769\pi\)
\(8\) 0.152787 + 0.833730i 0.152787 + 0.833730i
\(9\) 0 0
\(10\) 0.464723 + 0.114544i 0.464723 + 0.114544i
\(11\) 0 0 −0.354605 0.935016i \(-0.615385\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(12\) 0 0
\(13\) 0 0 0.120537 0.992709i \(-0.461538\pi\)
−0.120537 + 0.992709i \(0.538462\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.354605 0.0874023i 0.354605 0.0874023i
\(17\) −0.587763 0.851521i −0.587763 0.851521i 0.410413 0.911900i \(-0.365385\pi\)
−0.998176 + 0.0603785i \(0.980769\pi\)
\(18\) 0 0
\(19\) 1.12477 + 1.43566i 1.12477 + 1.43566i 0.885456 + 0.464723i \(0.153846\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(20\) 0.138961 0.758284i 0.138961 0.758284i
\(21\) 0 0
\(22\) 0 0
\(23\) 0.501487 0.501487i 0.501487 0.501487i −0.410413 0.911900i \(-0.634615\pi\)
0.911900 + 0.410413i \(0.134615\pi\)
\(24\) 0 0
\(25\) −0.822984 0.568065i −0.822984 0.568065i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 0.354605 0.935016i \(-0.384615\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(30\) 0 0
\(31\) −0.0495602 0.110118i −0.0495602 0.110118i 0.885456 0.464723i \(-0.153846\pi\)
−0.935016 + 0.354605i \(0.884615\pi\)
\(32\) 0.304173 + 0.976124i 0.304173 + 0.976124i
\(33\) 0 0
\(34\) 0.389835 0.305417i 0.389835 0.305417i
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 −0.239316 0.970942i \(-0.576923\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(38\) −0.653396 + 0.578858i −0.653396 + 0.578858i
\(39\) 0 0
\(40\) 0.841434 + 0.102169i 0.841434 + 0.102169i
\(41\) 0 0 0.410413 0.911900i \(-0.365385\pi\)
−0.410413 + 0.911900i \(0.634615\pi\)
\(42\) 0 0
\(43\) 0 0 0.239316 0.970942i \(-0.423077\pi\)
−0.239316 + 0.970942i \(0.576923\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0.254082 + 0.225097i 0.254082 + 0.225097i
\(47\) −0.731645 + 1.39403i −0.731645 + 1.39403i 0.180255 + 0.983620i \(0.442308\pi\)
−0.911900 + 0.410413i \(0.865385\pi\)
\(48\) 0 0
\(49\) −0.120537 0.992709i −0.120537 0.992709i
\(50\) 0.247614 0.409604i 0.247614 0.409604i
\(51\) 0 0
\(52\) 0 0
\(53\) 0.180255 0.983620i 0.180255 0.983620i
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.885456 0.464723i \(-0.846154\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(60\) 0 0
\(61\) 0.354605 0.0649838i 0.354605 0.0649838i 1.00000i \(-0.5\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(62\) 0.0511777 0.0268601i 0.0511777 0.0268601i
\(63\) 0 0
\(64\) −0.116077 + 0.0440221i −0.116077 + 0.0440221i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 0.616719 0.787183i \(-0.288462\pi\)
−0.616719 + 0.787183i \(0.711538\pi\)
\(68\) −0.528936 0.597045i −0.528936 0.597045i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.855781 0.517338i \(-0.173077\pi\)
−0.855781 + 0.517338i \(0.826923\pi\)
\(72\) 0 0
\(73\) 0 0 −0.983620 0.180255i \(-0.942308\pi\)
0.983620 + 0.180255i \(0.0576923\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0.994184 + 0.994184i 0.994184 + 0.994184i
\(77\) 0 0
\(78\) 0 0
\(79\) 0.0359256 0.593921i 0.0359256 0.593921i −0.935016 0.354605i \(-0.884615\pi\)
0.970942 0.239316i \(-0.0769231\pi\)
\(80\) 0.0220513 0.364551i 0.0220513 0.364551i
\(81\) 0 0
\(82\) 0 0
\(83\) −1.40390 1.40390i −1.40390 1.40390i −0.787183 0.616719i \(-0.788462\pi\)
−0.616719 0.787183i \(-0.711538\pi\)
\(84\) 0 0
\(85\) −0.987826 + 0.307819i −0.987826 + 0.307819i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.822984 0.568065i \(-0.192308\pi\)
−0.822984 + 0.568065i \(0.807692\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0.337184 0.430383i 0.337184 0.430383i
\(93\) 0 0
\(94\) −0.687154 0.309263i −0.687154 0.309263i
\(95\) 1.70528 0.646728i 1.70528 0.646728i
\(96\) 0 0
\(97\) 0 0 0.885456 0.464723i \(-0.153846\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(98\) 0.470791 0.0862757i 0.470791 0.0862757i
\(99\) 0 0
\(100\) −0.682609 0.358261i −0.682609 0.358261i
\(101\) 0 0 −0.954721 0.297503i \(-0.903846\pi\)
0.954721 + 0.297503i \(0.0961538\pi\)
\(102\) 0 0
\(103\) 0 0 −0.855781 0.517338i \(-0.826923\pi\)
0.855781 + 0.517338i \(0.173077\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0.475142 + 0.0576926i 0.475142 + 0.0576926i
\(107\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) 0 0
\(109\) −1.01773 + 1.68353i −1.01773 + 1.68353i −0.354605 + 0.935016i \(0.615385\pi\)
−0.663123 + 0.748511i \(0.730769\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.445368 + 0.394562i 0.445368 + 0.394562i 0.855781 0.517338i \(-0.173077\pi\)
−0.410413 + 0.911900i \(0.634615\pi\)
\(114\) 0 0
\(115\) −0.329586 0.627974i −0.329586 0.627974i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.748511 + 0.663123i −0.748511 + 0.663123i
\(122\) 0.0412943 + 0.167537i 0.0412943 + 0.167537i
\(123\) 0 0
\(124\) −0.0481605 0.0796673i −0.0481605 0.0796673i
\(125\) −0.787183 + 0.616719i −0.787183 + 0.616719i
\(126\) 0 0
\(127\) 0 0 −0.297503 0.954721i \(-0.596154\pi\)
0.297503 + 0.954721i \(0.403846\pi\)
\(128\) 0.395227 + 0.878159i 0.395227 + 0.878159i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.568065 0.822984i \(-0.307692\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.620137 0.620137i 0.620137 0.620137i
\(137\) −0.219835 + 0.0989396i −0.219835 + 0.0989396i −0.517338 0.855781i \(-0.673077\pi\)
0.297503 + 0.954721i \(0.403846\pi\)
\(138\) 0 0
\(139\) 0.359852 1.96365i 0.359852 1.96365i 0.120537 0.992709i \(-0.461538\pi\)
0.239316 0.970942i \(-0.423077\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 −0.970942 0.239316i \(-0.923077\pi\)
0.970942 + 0.239316i \(0.0769231\pi\)
\(150\) 0 0
\(151\) 0.147958 + 0.807380i 0.147958 + 0.807380i 0.970942 + 0.239316i \(0.0769231\pi\)
−0.822984 + 0.568065i \(0.807692\pi\)
\(152\) −1.02511 + 1.15711i −1.02511 + 1.15711i
\(153\) 0 0
\(154\) 0 0
\(155\) −0.119877 + 0.0145556i −0.119877 + 0.0145556i
\(156\) 0 0
\(157\) 0 0 −0.0603785 0.998176i \(-0.519231\pi\)
0.0603785 + 0.998176i \(0.480769\pi\)
\(158\) 0.284789 0.284789
\(159\) 0 0
\(160\) 1.02242 1.02242
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 0.992709 0.120537i \(-0.0384615\pi\)
−0.992709 + 0.120537i \(0.961538\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0.630154 0.711297i 0.630154 0.711297i
\(167\) 0.269846 + 1.47250i 0.269846 + 1.47250i 0.787183 + 0.616719i \(0.211538\pi\)
−0.517338 + 0.855781i \(0.673077\pi\)
\(168\) 0 0
\(169\) −0.970942 0.239316i −0.970942 0.239316i
\(170\) −0.175610 0.463046i −0.175610 0.463046i
\(171\) 0 0
\(172\) 0 0
\(173\) 0.894342 + 0.700673i 0.894342 + 0.700673i 0.954721 0.297503i \(-0.0961538\pi\)
−0.0603785 + 0.998176i \(0.519231\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.180255 0.983620i \(-0.442308\pi\)
−0.180255 + 0.983620i \(0.557692\pi\)
\(180\) 0 0
\(181\) −1.43566 + 0.646140i −1.43566 + 0.646140i −0.970942 0.239316i \(-0.923077\pi\)
−0.464723 + 0.885456i \(0.653846\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0.494725 + 0.341484i 0.494725 + 0.341484i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −0.430383 + 1.13483i −0.430383 + 1.13483i
\(189\) 0 0
\(190\) 0.358261 + 0.796023i 0.358261 + 0.796023i
\(191\) 0 0 −0.297503 0.954721i \(-0.596154\pi\)
0.297503 + 0.954721i \(0.403846\pi\)
\(192\) 0 0
\(193\) 0 0 0.787183 0.616719i \(-0.211538\pi\)
−0.787183 + 0.616719i \(0.788462\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.184491 0.748511i −0.184491 0.748511i
\(197\) −1.28112 + 1.13498i −1.28112 + 1.13498i −0.297503 + 0.954721i \(0.596154\pi\)
−0.983620 + 0.180255i \(0.942308\pi\)
\(198\) 0 0
\(199\) −0.922670 0.112032i −0.922670 0.112032i −0.354605 0.935016i \(-0.615385\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(200\) 0.347872 0.772939i 0.347872 0.772939i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0.241073i 0.241073i 0.992709 + 0.120537i \(0.0384615\pi\)
−0.992709 + 0.120537i \(0.961538\pi\)
\(212\) 0.0465465 0.769506i 0.0465465 0.769506i
\(213\) 0 0
\(214\) −0.675652 + 0.0408694i −0.675652 + 0.0408694i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −0.833730 0.437575i −0.833730 0.437575i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.935016 0.354605i \(-0.115385\pi\)
−0.935016 + 0.354605i \(0.884615\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −0.175634 + 0.224181i −0.175634 + 0.224181i
\(227\) 1.26619 + 1.42924i 1.26619 + 1.42924i 0.855781 + 0.517338i \(0.173077\pi\)
0.410413 + 0.911900i \(0.365385\pi\)
\(228\) 0 0
\(229\) −1.63397 + 1.12785i −1.63397 + 1.12785i −0.748511 + 0.663123i \(0.769231\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(230\) 0.290495 0.175610i 0.290495 0.175610i
\(231\) 0 0
\(232\) 0 0
\(233\) 1.57144 0.489680i 1.57144 0.489680i 0.616719 0.787183i \(-0.288462\pi\)
0.954721 + 0.297503i \(0.0961538\pi\)
\(234\) 0 0
\(235\) 1.11325 + 1.11325i 1.11325 + 1.11325i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.0603785 0.998176i \(-0.480769\pi\)
−0.0603785 + 0.998176i \(0.519231\pi\)
\(240\) 0 0
\(241\) −1.53901 0.583668i −1.53901 0.583668i −0.568065 0.822984i \(-0.692308\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(242\) −0.338443 0.338443i −0.338443 0.338443i
\(243\) 0 0
\(244\) 0.265338 0.0826825i 0.265338 0.0826825i
\(245\) −0.983620 0.180255i −0.983620 0.180255i
\(246\) 0 0
\(247\) 0 0
\(248\) 0.0842368 0.0581444i 0.0842368 0.0581444i
\(249\) 0 0
\(250\) −0.317391 0.358261i −0.317391 0.358261i
\(251\) 0 0 0.616719 0.787183i \(-0.288462\pi\)
−0.616719 + 0.787183i \(0.711538\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.518050 + 0.271894i −0.518050 + 0.271894i
\(257\) −1.47250 + 0.269846i −1.47250 + 0.269846i −0.855781 0.517338i \(-0.826923\pi\)
−0.616719 + 0.787183i \(0.711538\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.13406 0.0685978i 1.13406 0.0685978i 0.517338 0.855781i \(-0.326923\pi\)
0.616719 + 0.787183i \(0.288462\pi\)
\(264\) 0 0
\(265\) −0.885456 0.464723i −0.885456 0.464723i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 −0.120537 0.992709i \(-0.538462\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(270\) 0 0
\(271\) 0.616337 1.17433i 0.616337 1.17433i −0.354605 0.935016i \(-0.615385\pi\)
0.970942 0.239316i \(-0.0769231\pi\)
\(272\) −0.282848 0.250582i −0.282848 0.250582i
\(273\) 0 0
\(274\) −0.0536222 0.102169i −0.0536222 0.102169i
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 0.410413 0.911900i \(-0.365385\pi\)
−0.410413 + 0.911900i \(0.634615\pi\)
\(278\) 0.948549 + 0.115175i 0.948549 + 0.115175i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.239316 0.970942i \(-0.576923\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(282\) 0 0
\(283\) 0 0 −0.517338 0.855781i \(-0.673077\pi\)
0.517338 + 0.855781i \(0.326923\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −0.0250187 + 0.0659688i −0.0250187 + 0.0659688i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.01510 0.700673i −1.01510 0.700673i −0.0603785 0.998176i \(-0.519231\pi\)
−0.954721 + 0.297503i \(0.903846\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −0.381457 + 0.0940206i −0.381457 + 0.0940206i
\(303\) 0 0
\(304\) 0.524330 + 0.410786i 0.524330 + 0.410786i
\(305\) 0.0434547 0.357882i 0.0434547 0.357882i
\(306\) 0 0
\(307\) 0 0 −0.354605 0.935016i \(-0.615385\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −0.0104184 0.0568513i −0.0104184 0.0568513i
\(311\) 0 0 0.663123 0.748511i \(-0.269231\pi\)
−0.663123 + 0.748511i \(0.730769\pi\)
\(312\) 0 0
\(313\) 0 0 0.297503 0.954721i \(-0.403846\pi\)
−0.297503 + 0.954721i \(0.596154\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −0.0276955 0.457861i −0.0276955 0.457861i
\(317\) 1.96724 1.96724 0.983620 0.180255i \(-0.0576923\pi\)
0.983620 + 0.180255i \(0.0576923\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.00749563 + 0.123918i 0.00749563 + 0.123918i
\(321\) 0 0
\(322\) 0 0
\(323\) 0.561400 1.80160i 0.561400 1.80160i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.198399 1.63397i 0.198399 1.63397i −0.464723 0.885456i \(-0.653846\pi\)
0.663123 0.748511i \(-0.269231\pi\)
\(332\) −1.20485 0.943939i −1.20485 0.943939i
\(333\) 0 0
\(334\) −0.695701 + 0.171475i −0.695701 + 0.171475i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.616719 0.787183i \(-0.711538\pi\)
0.616719 + 0.787183i \(0.288462\pi\)
\(338\) 0.0862757 0.470791i 0.0862757 0.470791i
\(339\) 0 0
\(340\) −0.727371 + 0.327363i −0.727371 + 0.327363i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −0.308906 + 0.447528i −0.308906 + 0.447528i
\(347\) −0.437383 + 1.15328i −0.437383 + 1.15328i 0.517338 + 0.855781i \(0.326923\pi\)
−0.954721 + 0.297503i \(0.903846\pi\)
\(348\) 0 0
\(349\) −0.783659 1.74122i −0.783659 1.74122i −0.663123 0.748511i \(-0.730769\pi\)
−0.120537 0.992709i \(-0.538462\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.00461 1.66183i −1.00461 1.66183i −0.707107 0.707107i \(-0.750000\pi\)
−0.297503 0.954721i \(-0.596154\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.410413 0.911900i \(-0.365385\pi\)
−0.410413 + 0.911900i \(0.634615\pi\)
\(360\) 0 0
\(361\) −0.556707 + 2.25865i −0.556707 + 2.25865i
\(362\) −0.350188 0.667228i −0.350188 0.667228i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.120537 0.992709i \(-0.538462\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(368\) 0.133999 0.221661i 0.133999 0.221661i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.998176 0.0603785i \(-0.0192308\pi\)
−0.998176 + 0.0603785i \(0.980769\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −1.27403 0.397005i −1.27403 0.397005i
\(377\) 0 0
\(378\) 0 0
\(379\) 1.39105 0.254919i 1.39105 0.254919i 0.568065 0.822984i \(-0.307692\pi\)
0.822984 + 0.568065i \(0.192308\pi\)
\(380\) 1.24494 0.653396i 1.24494 0.653396i
\(381\) 0 0
\(382\) 0 0
\(383\) −1.70528 0.767485i −1.70528 0.767485i −0.998176 0.0603785i \(-0.980769\pi\)
−0.707107 0.707107i \(-0.750000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 0.855781 0.517338i \(-0.173077\pi\)
−0.855781 + 0.517338i \(0.826923\pi\)
\(390\) 0 0
\(391\) −0.721782 0.132272i −0.721782 0.132272i
\(392\) 0.809235 0.252168i 0.809235 0.252168i
\(393\) 0 0
\(394\) −0.579267 0.579267i −0.579267 0.579267i
\(395\) −0.556340 0.210992i −0.556340 0.210992i
\(396\) 0 0
\(397\) 0 0 0.0603785 0.998176i \(-0.480769\pi\)
−0.0603785 + 0.998176i \(0.519231\pi\)
\(398\) 0.0268601 0.444051i 0.0268601 0.444051i
\(399\) 0 0
\(400\) −0.341484 0.129508i −0.341484 0.129508i
\(401\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0.470293 + 0.530851i 0.470293 + 0.530851i 0.935016 0.354605i \(-0.115385\pi\)
−0.464723 + 0.885456i \(0.653846\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −1.75800 + 0.922670i −1.75800 + 0.922670i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.954721 0.297503i \(-0.903846\pi\)
0.954721 + 0.297503i \(0.0961538\pi\)
\(420\) 0 0
\(421\) −1.70844 1.03279i −1.70844 1.03279i −0.885456 0.464723i \(-0.846154\pi\)
−0.822984 0.568065i \(-0.807692\pi\)
\(422\) −0.115175 + 0.00696679i −0.115175 + 0.00696679i
\(423\) 0 0
\(424\) 0.847614 0.847614
\(425\) 1.03468i 1.03468i
\(426\) 0 0
\(427\) 0 0
\(428\) 0.131413 + 1.08229i 0.131413 + 1.08229i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.748511 0.663123i \(-0.769231\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(432\) 0 0
\(433\) 0 0 −0.464723 0.885456i \(-0.653846\pi\)
0.464723 + 0.885456i \(0.346154\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.622419 + 1.38296i −0.622419 + 1.38296i
\(437\) 1.28403 + 0.155909i 1.28403 + 0.155909i
\(438\) 0 0
\(439\) −1.12054 + 0.992709i −1.12054 + 0.992709i −0.120537 + 0.992709i \(0.538462\pi\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.52862 1.19760i 1.52862 1.19760i 0.616719 0.787183i \(-0.288462\pi\)
0.911900 0.410413i \(-0.134615\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 0.568065 0.822984i \(-0.307692\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0.377501 + 0.260570i 0.377501 + 0.260570i
\(453\) 0 0
\(454\) −0.646238 + 0.646238i −0.646238 + 0.646238i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.180255 0.983620i \(-0.442308\pi\)
−0.180255 + 0.983620i \(0.557692\pi\)
\(458\) −0.586058 0.748047i −0.586058 0.748047i
\(459\) 0 0
\(460\) −0.310583 0.449957i −0.310583 0.449957i
\(461\) 0 0 0.970942 0.239316i \(-0.0769231\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(462\) 0 0
\(463\) 0 0 −0.787183 0.616719i \(-0.788462\pi\)
0.787183 + 0.616719i \(0.211538\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0.279362 + 0.736617i 0.279362 + 0.736617i
\(467\) −1.93834 0.477758i −1.93834 0.477758i −0.983620 0.180255i \(-0.942308\pi\)
−0.954721 0.297503i \(-0.903846\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −0.499690 + 0.564034i −0.499690 + 0.564034i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −0.110118 1.82047i −0.110118 1.82047i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.0603785 0.998176i \(-0.519231\pi\)
0.0603785 + 0.998176i \(0.480769\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0.234376 0.752140i 0.234376 0.752140i
\(483\) 0 0
\(484\) −0.511209 + 0.577036i −0.511209 + 0.577036i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 −0.970942 0.239316i \(-0.923077\pi\)
0.970942 + 0.239316i \(0.0769231\pi\)
\(488\) 0.108358 + 0.285716i 0.108358 + 0.285716i
\(489\) 0 0
\(490\) 0.0576926 0.475142i 0.0576926 0.475142i
\(491\) 0 0 −0.787183 0.616719i \(-0.788462\pi\)
0.787183 + 0.616719i \(0.211538\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −0.0271989 0.0347168i −0.0271989 0.0347168i
\(497\) 0 0
\(498\) 0 0
\(499\) 1.12477 0.506219i 1.12477 0.506219i 0.239316 0.970942i \(-0.423077\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(500\) −0.545117 + 0.545117i −0.545117 + 0.545117i
\(501\) 0 0
\(502\) 0 0
\(503\) 1.93834 + 0.117248i 1.93834 + 0.117248i 0.983620 0.180255i \(-0.0576923\pi\)
0.954721 + 0.297503i \(0.0961538\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 −0.297503 0.954721i \(-0.596154\pi\)
0.297503 + 0.954721i \(0.403846\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.353325 + 0.584472i 0.353325 + 0.584472i
\(513\) 0 0
\(514\) −0.171475 0.695701i −0.171475 0.695701i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.464723 0.885456i \(-0.653846\pi\)
0.464723 + 0.885456i \(0.346154\pi\)
\(522\) 0 0
\(523\) 0 0 −0.748511 0.663123i \(-0.769231\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0.0655463 + 0.539822i 0.0655463 + 0.539822i
\(527\) −0.0646384 + 0.106925i −0.0646384 + 0.106925i
\(528\) 0 0
\(529\) 0.497021i 0.497021i
\(530\) 0.196436 0.436464i 0.196436 0.436464i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1.35018 + 0.420733i 1.35018 + 0.420733i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1.39974 0.530851i 1.39974 0.530851i 0.464723 0.885456i \(-0.346154\pi\)
0.935016 + 0.354605i \(0.115385\pi\)
\(542\) 0.578858 + 0.260523i 0.578858 + 0.260523i
\(543\) 0 0
\(544\) 0.652409 0.832739i 0.652409 0.832739i
\(545\) 1.30452 + 1.47250i 1.30452 + 1.47250i
\(546\) 0 0
\(547\) 0 0 0.822984 0.568065i \(-0.192308\pi\)
−0.822984 + 0.568065i \(0.807692\pi\)
\(548\) −0.159044 + 0.0961453i −0.159044 + 0.0961453i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0.0929232 1.53620i 0.0929232 1.53620i
\(557\) −0.119877 + 1.98180i −0.119877 + 1.98180i 0.0603785 + 0.998176i \(0.480769\pi\)
−0.180255 + 0.983620i \(0.557692\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.83940 0.337083i −1.83940 0.337083i −0.855781 0.517338i \(-0.826923\pi\)
−0.983620 + 0.180255i \(0.942308\pi\)
\(564\) 0 0
\(565\) 0.509195 0.307819i 0.509195 0.307819i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.616719 0.787183i \(-0.288462\pi\)
−0.616719 + 0.787183i \(0.711538\pi\)
\(570\) 0 0
\(571\) 0.943521 + 0.424644i 0.943521 + 0.424644i 0.822984 0.568065i \(-0.192308\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.697593 + 0.127839i −0.697593 + 0.127839i
\(576\) 0 0
\(577\) 0 0 −0.885456 0.464723i \(-0.846154\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(578\) −0.0322402 0.0100464i −0.0322402 0.0100464i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0.305417 0.505221i 0.305417 0.505221i
\(587\) −0.0434547 0.357882i −0.0434547 0.357882i −0.998176 0.0603785i \(-0.980769\pi\)
0.954721 0.297503i \(-0.0961538\pi\)
\(588\) 0 0
\(589\) 0.102349 0.195010i 0.102349 0.195010i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −0.338443 + 1.37312i −0.338443 + 1.37312i 0.517338 + 0.855781i \(0.326923\pi\)
−0.855781 + 0.517338i \(0.826923\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.239316 0.970942i \(-0.576923\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(600\) 0 0
\(601\) −0.987826 1.63406i −0.987826 1.63406i −0.748511 0.663123i \(-0.769231\pi\)
−0.239316 0.970942i \(-0.576923\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0.188255 + 0.604132i 0.188255 + 0.604132i
\(605\) 0.410413 + 0.911900i 0.410413 + 0.911900i
\(606\) 0 0
\(607\) 0 0 0.354605 0.935016i \(-0.384615\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(608\) −1.05926 + 1.53461i −1.05926 + 1.53461i
\(609\) 0 0
\(610\) 0.172237 + 0.0104184i 0.172237 + 0.0104184i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.09215 1.39403i −1.09215 1.39403i −0.911900 0.410413i \(-0.865385\pi\)
−0.180255 0.983620i \(-0.557692\pi\)
\(618\) 0 0
\(619\) 1.06230 + 1.53901i 1.06230 + 1.53901i 0.822984 + 0.568065i \(0.192308\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(620\) −0.0903879 + 0.0222786i −0.0903879 + 0.0222786i
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.354605 + 0.935016i 0.354605 + 0.935016i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −0.568065 + 1.82298i −0.568065 + 1.82298i 1.00000i \(0.5\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(632\) 0.500658 0.0607909i 0.500658 0.0607909i
\(633\) 0 0
\(634\) 0.0568513 + 0.939865i 0.0568513 + 0.939865i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0.955978 0.116077i 0.955978 0.116077i
\(641\) 0 0 0.297503 0.954721i \(-0.403846\pi\)
−0.297503 + 0.954721i \(0.596154\pi\)
\(642\) 0 0
\(643\) 0 0 0.663123 0.748511i \(-0.269231\pi\)
−0.663123 + 0.748511i \(0.730769\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0.876952 + 0.216149i 0.876952 + 0.216149i
\(647\) 0.210992 + 0.556340i 0.210992 + 0.556340i 0.998176 0.0603785i \(-0.0192308\pi\)
−0.787183 + 0.616719i \(0.788462\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.204793 + 0.296694i 0.204793 + 0.296694i 0.911900 0.410413i \(-0.134615\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(660\) 0 0
\(661\) 0.935016 + 0.645395i 0.935016 + 0.645395i 0.935016 0.354605i \(-0.115385\pi\)
1.00000i \(0.5\pi\)
\(662\) 0.786374 + 0.0475669i 0.786374 + 0.0475669i
\(663\) 0 0
\(664\) 0.955978 1.38497i 0.955978 1.38497i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0.343340 + 1.10182i 0.343340 + 1.10182i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.239316 0.970942i \(-0.576923\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −0.765291 0.0929232i −0.765291 0.0929232i
\(677\) 0.767485 1.70528i 0.767485 1.70528i 0.0603785 0.998176i \(-0.480769\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −0.407565 0.776550i −0.407565 0.776550i
\(681\) 0 0
\(682\) 0 0
\(683\) 0.795403 1.51551i 0.795403 1.51551i −0.0603785 0.998176i \(-0.519231\pi\)
0.855781 0.517338i \(-0.173077\pi\)
\(684\) 0 0
\(685\) 0.0290582 + 0.239316i 0.0290582 + 0.239316i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0.359852 0.0217671i 0.359852 0.0217671i 0.120537 0.992709i \(-0.461538\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(692\) 0.749541 + 0.453113i 0.749541 + 0.453113i
\(693\) 0 0
\(694\) −0.563631 0.175634i −0.563631 0.175634i
\(695\) −1.76768 0.927751i −1.76768 0.927751i
\(696\) 0 0
\(697\) 0 0
\(698\) 0.809235 0.424719i 0.809235 0.424719i
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 −0.911900 0.410413i \(-0.865385\pi\)
0.911900 + 0.410413i \(0.134615\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0.764919 0.527986i 0.764919 0.527986i
\(707\) 0 0
\(708\) 0 0
\(709\) 1.39105 + 0.254919i 1.39105 + 0.254919i 0.822984 0.568065i \(-0.192308\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.0800767 0.0303691i −0.0800767 0.0303691i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −1.09518 0.200698i −1.09518 0.200698i
\(723\) 0 0
\(724\) −1.03866 + 0.627892i −1.03866 + 0.627892i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 −0.663123 0.748511i \(-0.730769\pi\)
0.663123 + 0.748511i \(0.269231\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.885456 0.464723i \(-0.153846\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0.642052 + 0.336975i 0.642052 + 0.336975i
\(737\) 0 0
\(738\) 0 0
\(739\) 1.68353 + 1.01773i 1.68353 + 1.01773i 0.935016 + 0.354605i \(0.115385\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.90944i 1.90944i 0.297503 + 0.954721i \(0.403846\pi\)
−0.297503 + 0.954721i \(0.596154\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −0.527986 1.00599i −0.527986 1.00599i −0.992709 0.120537i \(-0.961538\pi\)
0.464723 0.885456i \(-0.346154\pi\)
\(752\) −0.137603 + 0.558278i −0.137603 + 0.558278i
\(753\) 0 0
\(754\) 0 0
\(755\) 0.814841 + 0.0989396i 0.814841 + 0.0989396i
\(756\) 0 0
\(757\) 0 0 0.748511 0.663123i \(-0.230769\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(758\) 0.161990 + 0.657218i 0.161990 + 0.657218i
\(759\) 0 0
\(760\) 0.799741 + 1.32293i 0.799741 + 1.32293i
\(761\) 0 0 0.787183 0.616719i \(-0.211538\pi\)
−0.787183 + 0.616719i \(0.788462\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0.317391 0.836892i 0.317391 0.836892i
\(767\) 0 0
\(768\) 0 0
\(769\) 0.819328 + 0.0495602i 0.819328 + 0.0495602i 0.464723 0.885456i \(-0.346154\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.77080 0.796974i 1.77080 0.796974i 0.787183 0.616719i \(-0.211538\pi\)
0.983620 0.180255i \(-0.0576923\pi\)
\(774\) 0 0
\(775\) −0.0217671 + 0.118779i −0.0217671 + 0.118779i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0.0423350 0.348660i 0.0423350 0.348660i
\(783\) 0 0
\(784\) −0.129508 0.341484i −0.129508 0.341484i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.180255 0.983620i \(-0.557692\pi\)
0.180255 + 0.983620i \(0.442308\pi\)
\(788\) −0.874967 + 0.987633i −0.874967 + 0.987633i
\(789\) 0 0
\(790\) 0.0847255 0.271894i 0.0847255 0.271894i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −0.716521 −0.716521
\(797\) −0.0993811 1.64296i −0.0993811 1.64296i −0.616719 0.787183i \(-0.711538\pi\)
0.517338 0.855781i \(-0.326923\pi\)
\(798\) 0 0
\(799\) 1.61708 0.196349i 1.61708 0.196349i
\(800\) 0.304173 0.976124i 0.304173 0.976124i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.787183 0.616719i \(-0.788462\pi\)
0.787183 + 0.616719i \(0.211538\pi\)
\(810\) 0 0
\(811\) 1.45352 0.358261i 1.45352 0.358261i 0.568065 0.822984i \(-0.307692\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −0.240027 + 0.240027i −0.240027 + 0.240027i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.998176 0.0603785i \(-0.980769\pi\)
0.998176 + 0.0603785i \(0.0192308\pi\)
\(822\) 0 0
\(823\) 0 0 0.568065 0.822984i \(-0.307692\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −0.526852 1.69073i −0.526852 1.69073i −0.707107 0.707107i \(-0.750000\pi\)
0.180255 0.983620i \(-0.442308\pi\)
\(828\) 0 0
\(829\) 1.34731 1.05555i 1.34731 1.05555i 0.354605 0.935016i \(-0.384615\pi\)
0.992709 0.120537i \(-0.0384615\pi\)
\(830\) −0.491617 0.813235i −0.491617 0.813235i
\(831\) 0 0
\(832\) 0 0
\(833\) −0.774466 + 0.686117i −0.774466 + 0.686117i
\(834\) 0 0
\(835\) 1.48611 + 0.180446i 1.48611 + 0.180446i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.464723 0.885456i \(-0.653846\pi\)
0.464723 + 0.885456i \(0.346154\pi\)
\(840\) 0 0
\(841\) −0.748511 0.663123i −0.748511 0.663123i
\(842\) 0.444051 0.846068i 0.444051 0.846068i
\(843\) 0 0
\(844\) 0.0224013 + 0.184491i 0.0224013 + 0.184491i
\(845\) −0.517338 + 0.855781i −0.517338 + 0.855781i
\(846\) 0 0
\(847\) 0 0
\(848\) −0.0220513 0.364551i −0.0220513 0.364551i
\(849\) 0 0
\(850\) −0.494325 + 0.0299011i −0.494325 + 0.0299011i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.954721 0.297503i \(-0.903846\pi\)
0.954721 + 0.297503i \(0.0961538\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1.17907 + 0.216073i −1.17907 + 0.216073i
\(857\) 1.51551 0.795403i 1.51551 0.795403i 0.517338 0.855781i \(-0.326923\pi\)
0.998176 + 0.0603785i \(0.0192308\pi\)
\(858\) 0 0
\(859\) 0.869047 0.329586i 0.869047 0.329586i 0.120537 0.992709i \(-0.461538\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.544308 + 0.614397i 0.544308 + 0.614397i 0.954721 0.297503i \(-0.0961538\pi\)
−0.410413 + 0.911900i \(0.634615\pi\)
\(864\) 0 0
\(865\) 0.935016 0.645395i 0.935016 0.645395i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −1.55910 0.591289i −1.55910 0.591289i
\(873\) 0 0
\(874\) −0.0373797 + 0.617959i −0.0373797 + 0.617959i
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.935016 0.354605i \(-0.884615\pi\)
0.935016 + 0.354605i \(0.115385\pi\)
\(878\) −0.506657 0.506657i −0.506657 0.506657i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 −0.983620 0.180255i \(-0.942308\pi\)
0.983620 + 0.180255i \(0.0576923\pi\)
\(882\) 0 0
\(883\) 0 0 0.855781 0.517338i \(-0.173077\pi\)
−0.855781 + 0.517338i \(0.826923\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0.616337 + 0.695701i 0.616337 + 0.695701i
\(887\) −0.573207 + 0.731645i −0.573207 + 0.731645i −0.983620 0.180255i \(-0.942308\pi\)
0.410413 + 0.911900i \(0.365385\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2.82430 + 0.517572i −2.82430 + 0.517572i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −0.943521 + 0.424644i −0.943521 + 0.424644i
\(902\) 0 0
\(903\) 0 0
\(904\) −0.260912 + 0.431601i −0.260912 + 0.431601i
\(905\) 0.189769 + 1.56289i 0.189769 + 1.56289i
\(906\) 0 0
\(907\) 0 0 0.464723 0.885456i \(-0.346154\pi\)
−0.464723 + 0.885456i \(0.653846\pi\)
\(908\) 1.10182 + 0.976124i 1.10182 + 0.976124i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.239316 0.970942i \(-0.423077\pi\)
−0.239316 + 0.970942i \(0.576923\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −1.14566 + 1.01496i −1.14566 + 1.01496i
\(917\) 0 0
\(918\) 0 0
\(919\) −0.186505 0.308518i −0.186505 0.308518i 0.748511 0.663123i \(-0.230769\pi\)
−0.935016 + 0.354605i \(0.884615\pi\)
\(920\) 0.473204 0.370732i 0.473204 0.370732i
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.822984 0.568065i \(-0.807692\pi\)
0.822984 + 0.568065i \(0.192308\pi\)
\(930\) 0 0
\(931\) 1.28962 1.28962i 1.28962 1.28962i
\(932\) 1.15711 0.520771i 1.15711 0.520771i
\(933\) 0 0
\(934\) 0.172237 0.939865i 0.172237 0.939865i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.568065 0.822984i \(-0.692308\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0.955403 + 0.748511i 0.955403 + 0.748511i
\(941\) 0 0 0.120537 0.992709i \(-0.461538\pi\)
−0.120537 + 0.992709i \(0.538462\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.30452 + 1.47250i −1.30452 + 1.47250i −0.517338 + 0.855781i \(0.673077\pi\)
−0.787183 + 0.616719i \(0.788462\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0.866563 0.105220i 0.866563 0.105220i
\(951\) 0 0
\(952\) 0 0
\(953\) 1.82380 1.82380 0.911900 0.410413i \(-0.134615\pi\)
0.911900 + 0.410413i \(0.134615\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0.653453 0.737596i 0.653453 0.737596i
\(962\) 0 0
\(963\) 0 0
\(964\) −1.23202 0.303667i −1.23202 0.303667i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.120537 0.992709i \(-0.461538\pi\)
−0.120537 + 0.992709i \(0.538462\pi\)
\(968\) −0.667228 0.522740i −0.667228 0.522740i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.568065 0.822984i \(-0.692308\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0.120065 0.0540368i 0.120065 0.0540368i
\(977\) 0.657218 0.657218i 0.657218 0.657218i −0.297503 0.954721i \(-0.596154\pi\)
0.954721 + 0.297503i \(0.0961538\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −0.769506 0.0465465i −0.769506 0.0465465i
\(981\) 0 0
\(982\) 0 0
\(983\) −0.707916 + 1.86662i −0.707916 + 1.86662i −0.297503 + 0.954721i \(0.596154\pi\)
−0.410413 + 0.911900i \(0.634615\pi\)
\(984\) 0 0
\(985\) 0.702447 + 1.56077i 0.702447 + 1.56077i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0.447528 + 1.81569i 0.447528 + 1.81569i 0.568065 + 0.822984i \(0.307692\pi\)
−0.120537 + 0.992709i \(0.538462\pi\)
\(992\) 0.0924143 0.0818719i 0.0924143 0.0818719i
\(993\) 0 0
\(994\) 0 0
\(995\) −0.381457 + 0.847562i −0.381457 + 0.847562i
\(996\) 0 0
\(997\) 0 0 0.239316 0.970942i \(-0.423077\pi\)
−0.239316 + 0.970942i \(0.576923\pi\)
\(998\) 0.274355 + 0.522740i 0.274355 + 0.522740i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2385.1.ca.a.2359.2 yes 48
3.2 odd 2 inner 2385.1.ca.a.2359.1 yes 48
5.4 even 2 inner 2385.1.ca.a.2359.1 yes 48
15.14 odd 2 CM 2385.1.ca.a.2359.2 yes 48
53.2 odd 52 inner 2385.1.ca.a.1009.1 48
159.2 even 52 inner 2385.1.ca.a.1009.2 yes 48
265.214 odd 52 inner 2385.1.ca.a.1009.2 yes 48
795.479 even 52 inner 2385.1.ca.a.1009.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2385.1.ca.a.1009.1 48 53.2 odd 52 inner
2385.1.ca.a.1009.1 48 795.479 even 52 inner
2385.1.ca.a.1009.2 yes 48 159.2 even 52 inner
2385.1.ca.a.1009.2 yes 48 265.214 odd 52 inner
2385.1.ca.a.2359.1 yes 48 3.2 odd 2 inner
2385.1.ca.a.2359.1 yes 48 5.4 even 2 inner
2385.1.ca.a.2359.2 yes 48 1.1 even 1 trivial
2385.1.ca.a.2359.2 yes 48 15.14 odd 2 CM