Properties

Label 2385.1.ca.a.2359.2
Level 23852385
Weight 11
Character 2385.2359
Analytic conductor 1.1901.190
Analytic rank 00
Dimension 4848
Projective image D52D_{52}
CM discriminant -15
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2385,1,Mod(19,2385)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2385, base_ring=CyclotomicField(52)) chi = DirichletCharacter(H, H._module([0, 26, 37])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2385.19"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 2385=32553 2385 = 3^{2} \cdot 5 \cdot 53
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2385.ca (of order 5252, degree 2424, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.190270055131.19027005513
Analytic rank: 00
Dimension: 4848
Relative dimension: 22 over Q(ζ52)\Q(\zeta_{52})
Coefficient field: Q(ζ104)\Q(\zeta_{104})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x48x44+x40x36+x32x28+x24x20+x16x12+x8x4+1 x^{48} - x^{44} + x^{40} - x^{36} + x^{32} - x^{28} + x^{24} - x^{20} + x^{16} - x^{12} + x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D52D_{52}
Projective field: Galois closure of Q[x]/(x52)\mathbb{Q}[x]/(x^{52} - \cdots)

Embedding invariants

Embedding label 2359.2
Root 0.180255+0.983620i0.180255 + 0.983620i of defining polynomial
Character χ\chi == 2385.2359
Dual form 2385.1.ca.a.1009.2

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+(0.0288990+0.477758i)q2+(0.7652910.0929232i)q4+(0.2975030.954721i)q5+(0.152787+0.833730i)q8+(0.464723+0.114544i)q10+(0.3546050.0874023i)q16+(0.5877630.851521i)q17+(1.12477+1.43566i)q19+(0.1389610.758284i)q20+(0.5014870.501487i)q23+(0.8229840.568065i)q25+(0.04956020.110118i)q31+(0.304173+0.976124i)q32+(0.3898350.305417i)q34+(0.653396+0.578858i)q38+(0.841434+0.102169i)q40+(0.254082+0.225097i)q46+(0.731645+1.39403i)q47+(0.1205370.992709i)q49+(0.2476140.409604i)q50+(0.1802550.983620i)q53+(0.3546050.0649838i)q61+(0.05117770.0268601i)q62+(0.116077+0.0440221i)q64+(0.5289360.597045i)q68+(0.994184+0.994184i)q76+(0.03592560.593921i)q79+(0.02205130.364551i)q80+(1.403901.40390i)q83+(0.987826+0.307819i)q85+(0.3371840.430383i)q92+(0.6871540.309263i)q94+(1.705280.646728i)q95+(0.4707910.0862757i)q98+O(q100)q+(0.0288990 + 0.477758i) q^{2} +(0.765291 - 0.0929232i) q^{4} +(0.297503 - 0.954721i) q^{5} +(0.152787 + 0.833730i) q^{8} +(0.464723 + 0.114544i) q^{10} +(0.354605 - 0.0874023i) q^{16} +(-0.587763 - 0.851521i) q^{17} +(1.12477 + 1.43566i) q^{19} +(0.138961 - 0.758284i) q^{20} +(0.501487 - 0.501487i) q^{23} +(-0.822984 - 0.568065i) q^{25} +(-0.0495602 - 0.110118i) q^{31} +(0.304173 + 0.976124i) q^{32} +(0.389835 - 0.305417i) q^{34} +(-0.653396 + 0.578858i) q^{38} +(0.841434 + 0.102169i) q^{40} +(0.254082 + 0.225097i) q^{46} +(-0.731645 + 1.39403i) q^{47} +(-0.120537 - 0.992709i) q^{49} +(0.247614 - 0.409604i) q^{50} +(0.180255 - 0.983620i) q^{53} +(0.354605 - 0.0649838i) q^{61} +(0.0511777 - 0.0268601i) q^{62} +(-0.116077 + 0.0440221i) q^{64} +(-0.528936 - 0.597045i) q^{68} +(0.994184 + 0.994184i) q^{76} +(0.0359256 - 0.593921i) q^{79} +(0.0220513 - 0.364551i) q^{80} +(-1.40390 - 1.40390i) q^{83} +(-0.987826 + 0.307819i) q^{85} +(0.337184 - 0.430383i) q^{92} +(-0.687154 - 0.309263i) q^{94} +(1.70528 - 0.646728i) q^{95} +(0.470791 - 0.0862757i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 48q+4q164q194q31+4q49+4q61+4q76+4q794q85+O(q100) 48 q + 4 q^{16} - 4 q^{19} - 4 q^{31} + 4 q^{49} + 4 q^{61} + 4 q^{76} + 4 q^{79} - 4 q^{85}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2385Z)×\left(\mathbb{Z}/2385\mathbb{Z}\right)^\times.

nn 14321432 14861486 18561856
χ(n)\chi(n) 1-1 e(5152)e\left(\frac{51}{52}\right) 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.0288990 + 0.477758i 0.0288990 + 0.477758i 0.983620 + 0.180255i 0.0576923π0.0576923\pi
−0.954721 + 0.297503i 0.903846π0.903846\pi
33 0 0
44 0.765291 0.0929232i 0.765291 0.0929232i
55 0.297503 0.954721i 0.297503 0.954721i
66 0 0
77 0 0 0.663123 0.748511i 0.269231π-0.269231\pi
−0.663123 + 0.748511i 0.730769π0.730769\pi
88 0.152787 + 0.833730i 0.152787 + 0.833730i
99 0 0
1010 0.464723 + 0.114544i 0.464723 + 0.114544i
1111 0 0 −0.354605 0.935016i 0.615385π-0.615385\pi
0.354605 + 0.935016i 0.384615π0.384615\pi
1212 0 0
1313 0 0 0.120537 0.992709i 0.461538π-0.461538\pi
−0.120537 + 0.992709i 0.538462π0.538462\pi
1414 0 0
1515 0 0
1616 0.354605 0.0874023i 0.354605 0.0874023i
1717 −0.587763 0.851521i −0.587763 0.851521i 0.410413 0.911900i 0.365385π-0.365385\pi
−0.998176 + 0.0603785i 0.980769π0.980769\pi
1818 0 0
1919 1.12477 + 1.43566i 1.12477 + 1.43566i 0.885456 + 0.464723i 0.153846π0.153846\pi
0.239316 + 0.970942i 0.423077π0.423077\pi
2020 0.138961 0.758284i 0.138961 0.758284i
2121 0 0
2222 0 0
2323 0.501487 0.501487i 0.501487 0.501487i −0.410413 0.911900i 0.634615π-0.634615\pi
0.911900 + 0.410413i 0.134615π0.134615\pi
2424 0 0
2525 −0.822984 0.568065i −0.822984 0.568065i
2626 0 0
2727 0 0
2828 0 0
2929 0 0 0.354605 0.935016i 0.384615π-0.384615\pi
−0.354605 + 0.935016i 0.615385π0.615385\pi
3030 0 0
3131 −0.0495602 0.110118i −0.0495602 0.110118i 0.885456 0.464723i 0.153846π-0.153846\pi
−0.935016 + 0.354605i 0.884615π0.884615\pi
3232 0.304173 + 0.976124i 0.304173 + 0.976124i
3333 0 0
3434 0.389835 0.305417i 0.389835 0.305417i
3535 0 0
3636 0 0
3737 0 0 −0.239316 0.970942i 0.576923π-0.576923\pi
0.239316 + 0.970942i 0.423077π0.423077\pi
3838 −0.653396 + 0.578858i −0.653396 + 0.578858i
3939 0 0
4040 0.841434 + 0.102169i 0.841434 + 0.102169i
4141 0 0 0.410413 0.911900i 0.365385π-0.365385\pi
−0.410413 + 0.911900i 0.634615π0.634615\pi
4242 0 0
4343 0 0 0.239316 0.970942i 0.423077π-0.423077\pi
−0.239316 + 0.970942i 0.576923π0.576923\pi
4444 0 0
4545 0 0
4646 0.254082 + 0.225097i 0.254082 + 0.225097i
4747 −0.731645 + 1.39403i −0.731645 + 1.39403i 0.180255 + 0.983620i 0.442308π0.442308\pi
−0.911900 + 0.410413i 0.865385π0.865385\pi
4848 0 0
4949 −0.120537 0.992709i −0.120537 0.992709i
5050 0.247614 0.409604i 0.247614 0.409604i
5151 0 0
5252 0 0
5353 0.180255 0.983620i 0.180255 0.983620i
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 −0.885456 0.464723i 0.846154π-0.846154\pi
0.885456 + 0.464723i 0.153846π0.153846\pi
6060 0 0
6161 0.354605 0.0649838i 0.354605 0.0649838i 1.00000i 0.5π-0.5\pi
0.354605 + 0.935016i 0.384615π0.384615\pi
6262 0.0511777 0.0268601i 0.0511777 0.0268601i
6363 0 0
6464 −0.116077 + 0.0440221i −0.116077 + 0.0440221i
6565 0 0
6666 0 0
6767 0 0 0.616719 0.787183i 0.288462π-0.288462\pi
−0.616719 + 0.787183i 0.711538π0.711538\pi
6868 −0.528936 0.597045i −0.528936 0.597045i
6969 0 0
7070 0 0
7171 0 0 0.855781 0.517338i 0.173077π-0.173077\pi
−0.855781 + 0.517338i 0.826923π0.826923\pi
7272 0 0
7373 0 0 −0.983620 0.180255i 0.942308π-0.942308\pi
0.983620 + 0.180255i 0.0576923π0.0576923\pi
7474 0 0
7575 0 0
7676 0.994184 + 0.994184i 0.994184 + 0.994184i
7777 0 0
7878 0 0
7979 0.0359256 0.593921i 0.0359256 0.593921i −0.935016 0.354605i 0.884615π-0.884615\pi
0.970942 0.239316i 0.0769231π-0.0769231\pi
8080 0.0220513 0.364551i 0.0220513 0.364551i
8181 0 0
8282 0 0
8383 −1.40390 1.40390i −1.40390 1.40390i −0.787183 0.616719i 0.788462π-0.788462\pi
−0.616719 0.787183i 0.711538π-0.711538\pi
8484 0 0
8585 −0.987826 + 0.307819i −0.987826 + 0.307819i
8686 0 0
8787 0 0
8888 0 0
8989 0 0 0.822984 0.568065i 0.192308π-0.192308\pi
−0.822984 + 0.568065i 0.807692π0.807692\pi
9090 0 0
9191 0 0
9292 0.337184 0.430383i 0.337184 0.430383i
9393 0 0
9494 −0.687154 0.309263i −0.687154 0.309263i
9595 1.70528 0.646728i 1.70528 0.646728i
9696 0 0
9797 0 0 0.885456 0.464723i 0.153846π-0.153846\pi
−0.885456 + 0.464723i 0.846154π0.846154\pi
9898 0.470791 0.0862757i 0.470791 0.0862757i
9999 0 0
100100 −0.682609 0.358261i −0.682609 0.358261i
101101 0 0 −0.954721 0.297503i 0.903846π-0.903846\pi
0.954721 + 0.297503i 0.0961538π0.0961538\pi
102102 0 0
103103 0 0 −0.855781 0.517338i 0.826923π-0.826923\pi
0.855781 + 0.517338i 0.173077π0.173077\pi
104104 0 0
105105 0 0
106106 0.475142 + 0.0576926i 0.475142 + 0.0576926i
107107 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
108108 0 0
109109 −1.01773 + 1.68353i −1.01773 + 1.68353i −0.354605 + 0.935016i 0.615385π0.615385\pi
−0.663123 + 0.748511i 0.730769π0.730769\pi
110110 0 0
111111 0 0
112112 0 0
113113 0.445368 + 0.394562i 0.445368 + 0.394562i 0.855781 0.517338i 0.173077π-0.173077\pi
−0.410413 + 0.911900i 0.634615π0.634615\pi
114114 0 0
115115 −0.329586 0.627974i −0.329586 0.627974i
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −0.748511 + 0.663123i −0.748511 + 0.663123i
122122 0.0412943 + 0.167537i 0.0412943 + 0.167537i
123123 0 0
124124 −0.0481605 0.0796673i −0.0481605 0.0796673i
125125 −0.787183 + 0.616719i −0.787183 + 0.616719i
126126 0 0
127127 0 0 −0.297503 0.954721i 0.596154π-0.596154\pi
0.297503 + 0.954721i 0.403846π0.403846\pi
128128 0.395227 + 0.878159i 0.395227 + 0.878159i
129129 0 0
130130 0 0
131131 0 0 0.568065 0.822984i 0.307692π-0.307692\pi
−0.568065 + 0.822984i 0.692308π0.692308\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0.620137 0.620137i 0.620137 0.620137i
137137 −0.219835 + 0.0989396i −0.219835 + 0.0989396i −0.517338 0.855781i 0.673077π-0.673077\pi
0.297503 + 0.954721i 0.403846π0.403846\pi
138138 0 0
139139 0.359852 1.96365i 0.359852 1.96365i 0.120537 0.992709i 0.461538π-0.461538\pi
0.239316 0.970942i 0.423077π-0.423077\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 0 0 −0.970942 0.239316i 0.923077π-0.923077\pi
0.970942 + 0.239316i 0.0769231π0.0769231\pi
150150 0 0
151151 0.147958 + 0.807380i 0.147958 + 0.807380i 0.970942 + 0.239316i 0.0769231π0.0769231\pi
−0.822984 + 0.568065i 0.807692π0.807692\pi
152152 −1.02511 + 1.15711i −1.02511 + 1.15711i
153153 0 0
154154 0 0
155155 −0.119877 + 0.0145556i −0.119877 + 0.0145556i
156156 0 0
157157 0 0 −0.0603785 0.998176i 0.519231π-0.519231\pi
0.0603785 + 0.998176i 0.480769π0.480769\pi
158158 0.284789 0.284789
159159 0 0
160160 1.02242 1.02242
161161 0 0
162162 0 0
163163 0 0 0.992709 0.120537i 0.0384615π-0.0384615\pi
−0.992709 + 0.120537i 0.961538π0.961538\pi
164164 0 0
165165 0 0
166166 0.630154 0.711297i 0.630154 0.711297i
167167 0.269846 + 1.47250i 0.269846 + 1.47250i 0.787183 + 0.616719i 0.211538π0.211538\pi
−0.517338 + 0.855781i 0.673077π0.673077\pi
168168 0 0
169169 −0.970942 0.239316i −0.970942 0.239316i
170170 −0.175610 0.463046i −0.175610 0.463046i
171171 0 0
172172 0 0
173173 0.894342 + 0.700673i 0.894342 + 0.700673i 0.954721 0.297503i 0.0961538π-0.0961538\pi
−0.0603785 + 0.998176i 0.519231π0.519231\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 0.180255 0.983620i 0.442308π-0.442308\pi
−0.180255 + 0.983620i 0.557692π0.557692\pi
180180 0 0
181181 −1.43566 + 0.646140i −1.43566 + 0.646140i −0.970942 0.239316i 0.923077π-0.923077\pi
−0.464723 + 0.885456i 0.653846π0.653846\pi
182182 0 0
183183 0 0
184184 0.494725 + 0.341484i 0.494725 + 0.341484i
185185 0 0
186186 0 0
187187 0 0
188188 −0.430383 + 1.13483i −0.430383 + 1.13483i
189189 0 0
190190 0.358261 + 0.796023i 0.358261 + 0.796023i
191191 0 0 −0.297503 0.954721i 0.596154π-0.596154\pi
0.297503 + 0.954721i 0.403846π0.403846\pi
192192 0 0
193193 0 0 0.787183 0.616719i 0.211538π-0.211538\pi
−0.787183 + 0.616719i 0.788462π0.788462\pi
194194 0 0
195195 0 0
196196 −0.184491 0.748511i −0.184491 0.748511i
197197 −1.28112 + 1.13498i −1.28112 + 1.13498i −0.297503 + 0.954721i 0.596154π0.596154\pi
−0.983620 + 0.180255i 0.942308π0.942308\pi
198198 0 0
199199 −0.922670 0.112032i −0.922670 0.112032i −0.354605 0.935016i 0.615385π-0.615385\pi
−0.568065 + 0.822984i 0.692308π0.692308\pi
200200 0.347872 0.772939i 0.347872 0.772939i
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0.241073i 0.241073i 0.992709 + 0.120537i 0.0384615π0.0384615\pi
−0.992709 + 0.120537i 0.961538π0.961538\pi
212212 0.0465465 0.769506i 0.0465465 0.769506i
213213 0 0
214214 −0.675652 + 0.0408694i −0.675652 + 0.0408694i
215215 0 0
216216 0 0
217217 0 0
218218 −0.833730 0.437575i −0.833730 0.437575i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 0.935016 0.354605i 0.115385π-0.115385\pi
−0.935016 + 0.354605i 0.884615π0.884615\pi
224224 0 0
225225 0 0
226226 −0.175634 + 0.224181i −0.175634 + 0.224181i
227227 1.26619 + 1.42924i 1.26619 + 1.42924i 0.855781 + 0.517338i 0.173077π0.173077\pi
0.410413 + 0.911900i 0.365385π0.365385\pi
228228 0 0
229229 −1.63397 + 1.12785i −1.63397 + 1.12785i −0.748511 + 0.663123i 0.769231π0.769231\pi
−0.885456 + 0.464723i 0.846154π0.846154\pi
230230 0.290495 0.175610i 0.290495 0.175610i
231231 0 0
232232 0 0
233233 1.57144 0.489680i 1.57144 0.489680i 0.616719 0.787183i 0.288462π-0.288462\pi
0.954721 + 0.297503i 0.0961538π0.0961538\pi
234234 0 0
235235 1.11325 + 1.11325i 1.11325 + 1.11325i
236236 0 0
237237 0 0
238238 0 0
239239 0 0 0.0603785 0.998176i 0.480769π-0.480769\pi
−0.0603785 + 0.998176i 0.519231π0.519231\pi
240240 0 0
241241 −1.53901 0.583668i −1.53901 0.583668i −0.568065 0.822984i 0.692308π-0.692308\pi
−0.970942 + 0.239316i 0.923077π0.923077\pi
242242 −0.338443 0.338443i −0.338443 0.338443i
243243 0 0
244244 0.265338 0.0826825i 0.265338 0.0826825i
245245 −0.983620 0.180255i −0.983620 0.180255i
246246 0 0
247247 0 0
248248 0.0842368 0.0581444i 0.0842368 0.0581444i
249249 0 0
250250 −0.317391 0.358261i −0.317391 0.358261i
251251 0 0 0.616719 0.787183i 0.288462π-0.288462\pi
−0.616719 + 0.787183i 0.711538π0.711538\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 −0.518050 + 0.271894i −0.518050 + 0.271894i
257257 −1.47250 + 0.269846i −1.47250 + 0.269846i −0.855781 0.517338i 0.826923π-0.826923\pi
−0.616719 + 0.787183i 0.711538π0.711538\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 1.13406 0.0685978i 1.13406 0.0685978i 0.517338 0.855781i 0.326923π-0.326923\pi
0.616719 + 0.787183i 0.288462π0.288462\pi
264264 0 0
265265 −0.885456 0.464723i −0.885456 0.464723i
266266 0 0
267267 0 0
268268 0 0
269269 0 0 −0.120537 0.992709i 0.538462π-0.538462\pi
0.120537 + 0.992709i 0.461538π0.461538\pi
270270 0 0
271271 0.616337 1.17433i 0.616337 1.17433i −0.354605 0.935016i 0.615385π-0.615385\pi
0.970942 0.239316i 0.0769231π-0.0769231\pi
272272 −0.282848 0.250582i −0.282848 0.250582i
273273 0 0
274274 −0.0536222 0.102169i −0.0536222 0.102169i
275275 0 0
276276 0 0
277277 0 0 0.410413 0.911900i 0.365385π-0.365385\pi
−0.410413 + 0.911900i 0.634615π0.634615\pi
278278 0.948549 + 0.115175i 0.948549 + 0.115175i
279279 0 0
280280 0 0
281281 0 0 −0.239316 0.970942i 0.576923π-0.576923\pi
0.239316 + 0.970942i 0.423077π0.423077\pi
282282 0 0
283283 0 0 −0.517338 0.855781i 0.673077π-0.673077\pi
0.517338 + 0.855781i 0.326923π0.326923\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −0.0250187 + 0.0659688i −0.0250187 + 0.0659688i
290290 0 0
291291 0 0
292292 0 0
293293 −1.01510 0.700673i −1.01510 0.700673i −0.0603785 0.998176i 0.519231π-0.519231\pi
−0.954721 + 0.297503i 0.903846π0.903846\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 −0.381457 + 0.0940206i −0.381457 + 0.0940206i
303303 0 0
304304 0.524330 + 0.410786i 0.524330 + 0.410786i
305305 0.0434547 0.357882i 0.0434547 0.357882i
306306 0 0
307307 0 0 −0.354605 0.935016i 0.615385π-0.615385\pi
0.354605 + 0.935016i 0.384615π0.384615\pi
308308 0 0
309309 0 0
310310 −0.0104184 0.0568513i −0.0104184 0.0568513i
311311 0 0 0.663123 0.748511i 0.269231π-0.269231\pi
−0.663123 + 0.748511i 0.730769π0.730769\pi
312312 0 0
313313 0 0 0.297503 0.954721i 0.403846π-0.403846\pi
−0.297503 + 0.954721i 0.596154π0.596154\pi
314314 0 0
315315 0 0
316316 −0.0276955 0.457861i −0.0276955 0.457861i
317317 1.96724 1.96724 0.983620 0.180255i 0.0576923π-0.0576923\pi
0.983620 + 0.180255i 0.0576923π0.0576923\pi
318318 0 0
319319 0 0
320320 0.00749563 + 0.123918i 0.00749563 + 0.123918i
321321 0 0
322322 0 0
323323 0.561400 1.80160i 0.561400 1.80160i
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0.198399 1.63397i 0.198399 1.63397i −0.464723 0.885456i 0.653846π-0.653846\pi
0.663123 0.748511i 0.269231π-0.269231\pi
332332 −1.20485 0.943939i −1.20485 0.943939i
333333 0 0
334334 −0.695701 + 0.171475i −0.695701 + 0.171475i
335335 0 0
336336 0 0
337337 0 0 −0.616719 0.787183i 0.711538π-0.711538\pi
0.616719 + 0.787183i 0.288462π0.288462\pi
338338 0.0862757 0.470791i 0.0862757 0.470791i
339339 0 0
340340 −0.727371 + 0.327363i −0.727371 + 0.327363i
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 −0.308906 + 0.447528i −0.308906 + 0.447528i
347347 −0.437383 + 1.15328i −0.437383 + 1.15328i 0.517338 + 0.855781i 0.326923π0.326923\pi
−0.954721 + 0.297503i 0.903846π0.903846\pi
348348 0 0
349349 −0.783659 1.74122i −0.783659 1.74122i −0.663123 0.748511i 0.730769π-0.730769\pi
−0.120537 0.992709i 0.538462π-0.538462\pi
350350 0 0
351351 0 0
352352 0 0
353353 −1.00461 1.66183i −1.00461 1.66183i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.297503 0.954721i 0.596154π-0.596154\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 0.410413 0.911900i 0.365385π-0.365385\pi
−0.410413 + 0.911900i 0.634615π0.634615\pi
360360 0 0
361361 −0.556707 + 2.25865i −0.556707 + 2.25865i
362362 −0.350188 0.667228i −0.350188 0.667228i
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 −0.120537 0.992709i 0.538462π-0.538462\pi
0.120537 + 0.992709i 0.461538π0.461538\pi
368368 0.133999 0.221661i 0.133999 0.221661i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 0.998176 0.0603785i 0.0192308π-0.0192308\pi
−0.998176 + 0.0603785i 0.980769π0.980769\pi
374374 0 0
375375 0 0
376376 −1.27403 0.397005i −1.27403 0.397005i
377377 0 0
378378 0 0
379379 1.39105 0.254919i 1.39105 0.254919i 0.568065 0.822984i 0.307692π-0.307692\pi
0.822984 + 0.568065i 0.192308π0.192308\pi
380380 1.24494 0.653396i 1.24494 0.653396i
381381 0 0
382382 0 0
383383 −1.70528 0.767485i −1.70528 0.767485i −0.998176 0.0603785i 0.980769π-0.980769\pi
−0.707107 0.707107i 0.750000π-0.750000\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 0 0 0.855781 0.517338i 0.173077π-0.173077\pi
−0.855781 + 0.517338i 0.826923π0.826923\pi
390390 0 0
391391 −0.721782 0.132272i −0.721782 0.132272i
392392 0.809235 0.252168i 0.809235 0.252168i
393393 0 0
394394 −0.579267 0.579267i −0.579267 0.579267i
395395 −0.556340 0.210992i −0.556340 0.210992i
396396 0 0
397397 0 0 0.0603785 0.998176i 0.480769π-0.480769\pi
−0.0603785 + 0.998176i 0.519231π0.519231\pi
398398 0.0268601 0.444051i 0.0268601 0.444051i
399399 0 0
400400 −0.341484 0.129508i −0.341484 0.129508i
401401 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 0.470293 + 0.530851i 0.470293 + 0.530851i 0.935016 0.354605i 0.115385π-0.115385\pi
−0.464723 + 0.885456i 0.653846π0.653846\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 −1.75800 + 0.922670i −1.75800 + 0.922670i
416416 0 0
417417 0 0
418418 0 0
419419 0 0 −0.954721 0.297503i 0.903846π-0.903846\pi
0.954721 + 0.297503i 0.0961538π0.0961538\pi
420420 0 0
421421 −1.70844 1.03279i −1.70844 1.03279i −0.885456 0.464723i 0.846154π-0.846154\pi
−0.822984 0.568065i 0.807692π-0.807692\pi
422422 −0.115175 + 0.00696679i −0.115175 + 0.00696679i
423423 0 0
424424 0.847614 0.847614
425425 1.03468i 1.03468i
426426 0 0
427427 0 0
428428 0.131413 + 1.08229i 0.131413 + 1.08229i
429429 0 0
430430 0 0
431431 0 0 −0.748511 0.663123i 0.769231π-0.769231\pi
0.748511 + 0.663123i 0.230769π0.230769\pi
432432 0 0
433433 0 0 −0.464723 0.885456i 0.653846π-0.653846\pi
0.464723 + 0.885456i 0.346154π0.346154\pi
434434 0 0
435435 0 0
436436 −0.622419 + 1.38296i −0.622419 + 1.38296i
437437 1.28403 + 0.155909i 1.28403 + 0.155909i
438438 0 0
439439 −1.12054 + 0.992709i −1.12054 + 0.992709i −0.120537 + 0.992709i 0.538462π0.538462\pi
−1.00000 π\pi
440440 0 0
441441 0 0
442442 0 0
443443 1.52862 1.19760i 1.52862 1.19760i 0.616719 0.787183i 0.288462π-0.288462\pi
0.911900 0.410413i 0.134615π-0.134615\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 0.568065 0.822984i 0.307692π-0.307692\pi
−0.568065 + 0.822984i 0.692308π0.692308\pi
450450 0 0
451451 0 0
452452 0.377501 + 0.260570i 0.377501 + 0.260570i
453453 0 0
454454 −0.646238 + 0.646238i −0.646238 + 0.646238i
455455 0 0
456456 0 0
457457 0 0 0.180255 0.983620i 0.442308π-0.442308\pi
−0.180255 + 0.983620i 0.557692π0.557692\pi
458458 −0.586058 0.748047i −0.586058 0.748047i
459459 0 0
460460 −0.310583 0.449957i −0.310583 0.449957i
461461 0 0 0.970942 0.239316i 0.0769231π-0.0769231\pi
−0.970942 + 0.239316i 0.923077π0.923077\pi
462462 0 0
463463 0 0 −0.787183 0.616719i 0.788462π-0.788462\pi
0.787183 + 0.616719i 0.211538π0.211538\pi
464464 0 0
465465 0 0
466466 0.279362 + 0.736617i 0.279362 + 0.736617i
467467 −1.93834 0.477758i −1.93834 0.477758i −0.983620 0.180255i 0.942308π-0.942308\pi
−0.954721 0.297503i 0.903846π-0.903846\pi
468468 0 0
469469 0 0
470470 −0.499690 + 0.564034i −0.499690 + 0.564034i
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 −0.110118 1.82047i −0.110118 1.82047i
476476 0 0
477477 0 0
478478 0 0
479479 0 0 −0.0603785 0.998176i 0.519231π-0.519231\pi
0.0603785 + 0.998176i 0.480769π0.480769\pi
480480 0 0
481481 0 0
482482 0.234376 0.752140i 0.234376 0.752140i
483483 0 0
484484 −0.511209 + 0.577036i −0.511209 + 0.577036i
485485 0 0
486486 0 0
487487 0 0 −0.970942 0.239316i 0.923077π-0.923077\pi
0.970942 + 0.239316i 0.0769231π0.0769231\pi
488488 0.108358 + 0.285716i 0.108358 + 0.285716i
489489 0 0
490490 0.0576926 0.475142i 0.0576926 0.475142i
491491 0 0 −0.787183 0.616719i 0.788462π-0.788462\pi
0.787183 + 0.616719i 0.211538π0.211538\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 −0.0271989 0.0347168i −0.0271989 0.0347168i
497497 0 0
498498 0 0
499499 1.12477 0.506219i 1.12477 0.506219i 0.239316 0.970942i 0.423077π-0.423077\pi
0.885456 + 0.464723i 0.153846π0.153846\pi
500500 −0.545117 + 0.545117i −0.545117 + 0.545117i
501501 0 0
502502 0 0
503503 1.93834 + 0.117248i 1.93834 + 0.117248i 0.983620 0.180255i 0.0576923π-0.0576923\pi
0.954721 + 0.297503i 0.0961538π0.0961538\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 0 0 −0.297503 0.954721i 0.596154π-0.596154\pi
0.297503 + 0.954721i 0.403846π0.403846\pi
510510 0 0
511511 0 0
512512 0.353325 + 0.584472i 0.353325 + 0.584472i
513513 0 0
514514 −0.171475 0.695701i −0.171475 0.695701i
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 −0.464723 0.885456i 0.653846π-0.653846\pi
0.464723 + 0.885456i 0.346154π0.346154\pi
522522 0 0
523523 0 0 −0.748511 0.663123i 0.769231π-0.769231\pi
0.748511 + 0.663123i 0.230769π0.230769\pi
524524 0 0
525525 0 0
526526 0.0655463 + 0.539822i 0.0655463 + 0.539822i
527527 −0.0646384 + 0.106925i −0.0646384 + 0.106925i
528528 0 0
529529 0.497021i 0.497021i
530530 0.196436 0.436464i 0.196436 0.436464i
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 1.35018 + 0.420733i 1.35018 + 0.420733i
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 1.39974 0.530851i 1.39974 0.530851i 0.464723 0.885456i 0.346154π-0.346154\pi
0.935016 + 0.354605i 0.115385π0.115385\pi
542542 0.578858 + 0.260523i 0.578858 + 0.260523i
543543 0 0
544544 0.652409 0.832739i 0.652409 0.832739i
545545 1.30452 + 1.47250i 1.30452 + 1.47250i
546546 0 0
547547 0 0 0.822984 0.568065i 0.192308π-0.192308\pi
−0.822984 + 0.568065i 0.807692π0.807692\pi
548548 −0.159044 + 0.0961453i −0.159044 + 0.0961453i
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0.0929232 1.53620i 0.0929232 1.53620i
557557 −0.119877 + 1.98180i −0.119877 + 1.98180i 0.0603785 + 0.998176i 0.480769π0.480769\pi
−0.180255 + 0.983620i 0.557692π0.557692\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 −1.83940 0.337083i −1.83940 0.337083i −0.855781 0.517338i 0.826923π-0.826923\pi
−0.983620 + 0.180255i 0.942308π0.942308\pi
564564 0 0
565565 0.509195 0.307819i 0.509195 0.307819i
566566 0 0
567567 0 0
568568 0 0
569569 0 0 0.616719 0.787183i 0.288462π-0.288462\pi
−0.616719 + 0.787183i 0.711538π0.711538\pi
570570 0 0
571571 0.943521 + 0.424644i 0.943521 + 0.424644i 0.822984 0.568065i 0.192308π-0.192308\pi
0.120537 + 0.992709i 0.461538π0.461538\pi
572572 0 0
573573 0 0
574574 0 0
575575 −0.697593 + 0.127839i −0.697593 + 0.127839i
576576 0 0
577577 0 0 −0.885456 0.464723i 0.846154π-0.846154\pi
0.885456 + 0.464723i 0.153846π0.153846\pi
578578 −0.0322402 0.0100464i −0.0322402 0.0100464i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0.305417 0.505221i 0.305417 0.505221i
587587 −0.0434547 0.357882i −0.0434547 0.357882i −0.998176 0.0603785i 0.980769π-0.980769\pi
0.954721 0.297503i 0.0961538π-0.0961538\pi
588588 0 0
589589 0.102349 0.195010i 0.102349 0.195010i
590590 0 0
591591 0 0
592592 0 0
593593 −0.338443 + 1.37312i −0.338443 + 1.37312i 0.517338 + 0.855781i 0.326923π0.326923\pi
−0.855781 + 0.517338i 0.826923π0.826923\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 −0.239316 0.970942i 0.576923π-0.576923\pi
0.239316 + 0.970942i 0.423077π0.423077\pi
600600 0 0
601601 −0.987826 1.63406i −0.987826 1.63406i −0.748511 0.663123i 0.769231π-0.769231\pi
−0.239316 0.970942i 0.576923π-0.576923\pi
602602 0 0
603603 0 0
604604 0.188255 + 0.604132i 0.188255 + 0.604132i
605605 0.410413 + 0.911900i 0.410413 + 0.911900i
606606 0 0
607607 0 0 0.354605 0.935016i 0.384615π-0.384615\pi
−0.354605 + 0.935016i 0.615385π0.615385\pi
608608 −1.05926 + 1.53461i −1.05926 + 1.53461i
609609 0 0
610610 0.172237 + 0.0104184i 0.172237 + 0.0104184i
611611 0 0
612612 0 0
613613 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
614614 0 0
615615 0 0
616616 0 0
617617 −1.09215 1.39403i −1.09215 1.39403i −0.911900 0.410413i 0.865385π-0.865385\pi
−0.180255 0.983620i 0.557692π-0.557692\pi
618618 0 0
619619 1.06230 + 1.53901i 1.06230 + 1.53901i 0.822984 + 0.568065i 0.192308π0.192308\pi
0.239316 + 0.970942i 0.423077π0.423077\pi
620620 −0.0903879 + 0.0222786i −0.0903879 + 0.0222786i
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0.354605 + 0.935016i 0.354605 + 0.935016i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 −0.568065 + 1.82298i −0.568065 + 1.82298i 1.00000i 0.5π0.5\pi
−0.568065 + 0.822984i 0.692308π0.692308\pi
632632 0.500658 0.0607909i 0.500658 0.0607909i
633633 0 0
634634 0.0568513 + 0.939865i 0.0568513 + 0.939865i
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0.955978 0.116077i 0.955978 0.116077i
641641 0 0 0.297503 0.954721i 0.403846π-0.403846\pi
−0.297503 + 0.954721i 0.596154π0.596154\pi
642642 0 0
643643 0 0 0.663123 0.748511i 0.269231π-0.269231\pi
−0.663123 + 0.748511i 0.730769π0.730769\pi
644644 0 0
645645 0 0
646646 0.876952 + 0.216149i 0.876952 + 0.216149i
647647 0.210992 + 0.556340i 0.210992 + 0.556340i 0.998176 0.0603785i 0.0192308π-0.0192308\pi
−0.787183 + 0.616719i 0.788462π0.788462\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 0.204793 + 0.296694i 0.204793 + 0.296694i 0.911900 0.410413i 0.134615π-0.134615\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
660660 0 0
661661 0.935016 + 0.645395i 0.935016 + 0.645395i 0.935016 0.354605i 0.115385π-0.115385\pi
1.00000i 0.5π0.5\pi
662662 0.786374 + 0.0475669i 0.786374 + 0.0475669i
663663 0 0
664664 0.955978 1.38497i 0.955978 1.38497i
665665 0 0
666666 0 0
667667 0 0
668668 0.343340 + 1.10182i 0.343340 + 1.10182i
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 −0.239316 0.970942i 0.576923π-0.576923\pi
0.239316 + 0.970942i 0.423077π0.423077\pi
674674 0 0
675675 0 0
676676 −0.765291 0.0929232i −0.765291 0.0929232i
677677 0.767485 1.70528i 0.767485 1.70528i 0.0603785 0.998176i 0.480769π-0.480769\pi
0.707107 0.707107i 0.250000π-0.250000\pi
678678 0 0
679679 0 0
680680 −0.407565 0.776550i −0.407565 0.776550i
681681 0 0
682682 0 0
683683 0.795403 1.51551i 0.795403 1.51551i −0.0603785 0.998176i 0.519231π-0.519231\pi
0.855781 0.517338i 0.173077π-0.173077\pi
684684 0 0
685685 0.0290582 + 0.239316i 0.0290582 + 0.239316i
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0.359852 0.0217671i 0.359852 0.0217671i 0.120537 0.992709i 0.461538π-0.461538\pi
0.239316 + 0.970942i 0.423077π0.423077\pi
692692 0.749541 + 0.453113i 0.749541 + 0.453113i
693693 0 0
694694 −0.563631 0.175634i −0.563631 0.175634i
695695 −1.76768 0.927751i −1.76768 0.927751i
696696 0 0
697697 0 0
698698 0.809235 0.424719i 0.809235 0.424719i
699699 0 0
700700 0 0
701701 0 0 −0.911900 0.410413i 0.865385π-0.865385\pi
0.911900 + 0.410413i 0.134615π0.134615\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0.764919 0.527986i 0.764919 0.527986i
707707 0 0
708708 0 0
709709 1.39105 + 0.254919i 1.39105 + 0.254919i 0.822984 0.568065i 0.192308π-0.192308\pi
0.568065 + 0.822984i 0.307692π0.307692\pi
710710 0 0
711711 0 0
712712 0 0
713713 −0.0800767 0.0303691i −0.0800767 0.0303691i
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
720720 0 0
721721 0 0
722722 −1.09518 0.200698i −1.09518 0.200698i
723723 0 0
724724 −1.03866 + 0.627892i −1.03866 + 0.627892i
725725 0 0
726726 0 0
727727 0 0 −0.663123 0.748511i 0.730769π-0.730769\pi
0.663123 + 0.748511i 0.269231π0.269231\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 0 0 0.885456 0.464723i 0.153846π-0.153846\pi
−0.885456 + 0.464723i 0.846154π0.846154\pi
734734 0 0
735735 0 0
736736 0.642052 + 0.336975i 0.642052 + 0.336975i
737737 0 0
738738 0 0
739739 1.68353 + 1.01773i 1.68353 + 1.01773i 0.935016 + 0.354605i 0.115385π0.115385\pi
0.748511 + 0.663123i 0.230769π0.230769\pi
740740 0 0
741741 0 0
742742 0 0
743743 1.90944i 1.90944i 0.297503 + 0.954721i 0.403846π0.403846\pi
−0.297503 + 0.954721i 0.596154π0.596154\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 −0.527986 1.00599i −0.527986 1.00599i −0.992709 0.120537i 0.961538π-0.961538\pi
0.464723 0.885456i 0.346154π-0.346154\pi
752752 −0.137603 + 0.558278i −0.137603 + 0.558278i
753753 0 0
754754 0 0
755755 0.814841 + 0.0989396i 0.814841 + 0.0989396i
756756 0 0
757757 0 0 0.748511 0.663123i 0.230769π-0.230769\pi
−0.748511 + 0.663123i 0.769231π0.769231\pi
758758 0.161990 + 0.657218i 0.161990 + 0.657218i
759759 0 0
760760 0.799741 + 1.32293i 0.799741 + 1.32293i
761761 0 0 0.787183 0.616719i 0.211538π-0.211538\pi
−0.787183 + 0.616719i 0.788462π0.788462\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0.317391 0.836892i 0.317391 0.836892i
767767 0 0
768768 0 0
769769 0.819328 + 0.0495602i 0.819328 + 0.0495602i 0.464723 0.885456i 0.346154π-0.346154\pi
0.354605 + 0.935016i 0.384615π0.384615\pi
770770 0 0
771771 0 0
772772 0 0
773773 1.77080 0.796974i 1.77080 0.796974i 0.787183 0.616719i 0.211538π-0.211538\pi
0.983620 0.180255i 0.0576923π-0.0576923\pi
774774 0 0
775775 −0.0217671 + 0.118779i −0.0217671 + 0.118779i
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0.0423350 0.348660i 0.0423350 0.348660i
783783 0 0
784784 −0.129508 0.341484i −0.129508 0.341484i
785785 0 0
786786 0 0
787787 0 0 −0.180255 0.983620i 0.557692π-0.557692\pi
0.180255 + 0.983620i 0.442308π0.442308\pi
788788 −0.874967 + 0.987633i −0.874967 + 0.987633i
789789 0 0
790790 0.0847255 0.271894i 0.0847255 0.271894i
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 −0.716521 −0.716521
797797 −0.0993811 1.64296i −0.0993811 1.64296i −0.616719 0.787183i 0.711538π-0.711538\pi
0.517338 0.855781i 0.326923π-0.326923\pi
798798 0 0
799799 1.61708 0.196349i 1.61708 0.196349i
800800 0.304173 0.976124i 0.304173 0.976124i
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 −0.787183 0.616719i 0.788462π-0.788462\pi
0.787183 + 0.616719i 0.211538π0.211538\pi
810810 0 0
811811 1.45352 0.358261i 1.45352 0.358261i 0.568065 0.822984i 0.307692π-0.307692\pi
0.885456 + 0.464723i 0.153846π0.153846\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 −0.240027 + 0.240027i −0.240027 + 0.240027i
819819 0 0
820820 0 0
821821 0 0 −0.998176 0.0603785i 0.980769π-0.980769\pi
0.998176 + 0.0603785i 0.0192308π0.0192308\pi
822822 0 0
823823 0 0 0.568065 0.822984i 0.307692π-0.307692\pi
−0.568065 + 0.822984i 0.692308π0.692308\pi
824824 0 0
825825 0 0
826826 0 0
827827 −0.526852 1.69073i −0.526852 1.69073i −0.707107 0.707107i 0.750000π-0.750000\pi
0.180255 0.983620i 0.442308π-0.442308\pi
828828 0 0
829829 1.34731 1.05555i 1.34731 1.05555i 0.354605 0.935016i 0.384615π-0.384615\pi
0.992709 0.120537i 0.0384615π-0.0384615\pi
830830 −0.491617 0.813235i −0.491617 0.813235i
831831 0 0
832832 0 0
833833 −0.774466 + 0.686117i −0.774466 + 0.686117i
834834 0 0
835835 1.48611 + 0.180446i 1.48611 + 0.180446i
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.464723 0.885456i 0.653846π-0.653846\pi
0.464723 + 0.885456i 0.346154π0.346154\pi
840840 0 0
841841 −0.748511 0.663123i −0.748511 0.663123i
842842 0.444051 0.846068i 0.444051 0.846068i
843843 0 0
844844 0.0224013 + 0.184491i 0.0224013 + 0.184491i
845845 −0.517338 + 0.855781i −0.517338 + 0.855781i
846846 0 0
847847 0 0
848848 −0.0220513 0.364551i −0.0220513 0.364551i
849849 0 0
850850 −0.494325 + 0.0299011i −0.494325 + 0.0299011i
851851 0 0
852852 0 0
853853 0 0 −0.954721 0.297503i 0.903846π-0.903846\pi
0.954721 + 0.297503i 0.0961538π0.0961538\pi
854854 0 0
855855 0 0
856856 −1.17907 + 0.216073i −1.17907 + 0.216073i
857857 1.51551 0.795403i 1.51551 0.795403i 0.517338 0.855781i 0.326923π-0.326923\pi
0.998176 + 0.0603785i 0.0192308π0.0192308\pi
858858 0 0
859859 0.869047 0.329586i 0.869047 0.329586i 0.120537 0.992709i 0.461538π-0.461538\pi
0.748511 + 0.663123i 0.230769π0.230769\pi
860860 0 0
861861 0 0
862862 0 0
863863 0.544308 + 0.614397i 0.544308 + 0.614397i 0.954721 0.297503i 0.0961538π-0.0961538\pi
−0.410413 + 0.911900i 0.634615π0.634615\pi
864864 0 0
865865 0.935016 0.645395i 0.935016 0.645395i
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 −1.55910 0.591289i −1.55910 0.591289i
873873 0 0
874874 −0.0373797 + 0.617959i −0.0373797 + 0.617959i
875875 0 0
876876 0 0
877877 0 0 −0.935016 0.354605i 0.884615π-0.884615\pi
0.935016 + 0.354605i 0.115385π0.115385\pi
878878 −0.506657 0.506657i −0.506657 0.506657i
879879 0 0
880880 0 0
881881 0 0 −0.983620 0.180255i 0.942308π-0.942308\pi
0.983620 + 0.180255i 0.0576923π0.0576923\pi
882882 0 0
883883 0 0 0.855781 0.517338i 0.173077π-0.173077\pi
−0.855781 + 0.517338i 0.826923π0.826923\pi
884884 0 0
885885 0 0
886886 0.616337 + 0.695701i 0.616337 + 0.695701i
887887 −0.573207 + 0.731645i −0.573207 + 0.731645i −0.983620 0.180255i 0.942308π-0.942308\pi
0.410413 + 0.911900i 0.365385π0.365385\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 −2.82430 + 0.517572i −2.82430 + 0.517572i
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 −0.943521 + 0.424644i −0.943521 + 0.424644i
902902 0 0
903903 0 0
904904 −0.260912 + 0.431601i −0.260912 + 0.431601i
905905 0.189769 + 1.56289i 0.189769 + 1.56289i
906906 0 0
907907 0 0 0.464723 0.885456i 0.346154π-0.346154\pi
−0.464723 + 0.885456i 0.653846π0.653846\pi
908908 1.10182 + 0.976124i 1.10182 + 0.976124i
909909 0 0
910910 0 0
911911 0 0 0.239316 0.970942i 0.423077π-0.423077\pi
−0.239316 + 0.970942i 0.576923π0.576923\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 −1.14566 + 1.01496i −1.14566 + 1.01496i
917917 0 0
918918 0 0
919919 −0.186505 0.308518i −0.186505 0.308518i 0.748511 0.663123i 0.230769π-0.230769\pi
−0.935016 + 0.354605i 0.884615π0.884615\pi
920920 0.473204 0.370732i 0.473204 0.370732i
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 −0.822984 0.568065i 0.807692π-0.807692\pi
0.822984 + 0.568065i 0.192308π0.192308\pi
930930 0 0
931931 1.28962 1.28962i 1.28962 1.28962i
932932 1.15711 0.520771i 1.15711 0.520771i
933933 0 0
934934 0.172237 0.939865i 0.172237 0.939865i
935935 0 0
936936 0 0
937937 0 0 −0.568065 0.822984i 0.692308π-0.692308\pi
0.568065 + 0.822984i 0.307692π0.307692\pi
938938 0 0
939939 0 0
940940 0.955403 + 0.748511i 0.955403 + 0.748511i
941941 0 0 0.120537 0.992709i 0.461538π-0.461538\pi
−0.120537 + 0.992709i 0.538462π0.538462\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 −1.30452 + 1.47250i −1.30452 + 1.47250i −0.517338 + 0.855781i 0.673077π0.673077\pi
−0.787183 + 0.616719i 0.788462π0.788462\pi
948948 0 0
949949 0 0
950950 0.866563 0.105220i 0.866563 0.105220i
951951 0 0
952952 0 0
953953 1.82380 1.82380 0.911900 0.410413i 0.134615π-0.134615\pi
0.911900 + 0.410413i 0.134615π0.134615\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 0.653453 0.737596i 0.653453 0.737596i
962962 0 0
963963 0 0
964964 −1.23202 0.303667i −1.23202 0.303667i
965965 0 0
966966 0 0
967967 0 0 0.120537 0.992709i 0.461538π-0.461538\pi
−0.120537 + 0.992709i 0.538462π0.538462\pi
968968 −0.667228 0.522740i −0.667228 0.522740i
969969 0 0
970970 0 0
971971 0 0 −0.568065 0.822984i 0.692308π-0.692308\pi
0.568065 + 0.822984i 0.307692π0.307692\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0.120065 0.0540368i 0.120065 0.0540368i
977977 0.657218 0.657218i 0.657218 0.657218i −0.297503 0.954721i 0.596154π-0.596154\pi
0.954721 + 0.297503i 0.0961538π0.0961538\pi
978978 0 0
979979 0 0
980980 −0.769506 0.0465465i −0.769506 0.0465465i
981981 0 0
982982 0 0
983983 −0.707916 + 1.86662i −0.707916 + 1.86662i −0.297503 + 0.954721i 0.596154π0.596154\pi
−0.410413 + 0.911900i 0.634615π0.634615\pi
984984 0 0
985985 0.702447 + 1.56077i 0.702447 + 1.56077i
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0.447528 + 1.81569i 0.447528 + 1.81569i 0.568065 + 0.822984i 0.307692π0.307692\pi
−0.120537 + 0.992709i 0.538462π0.538462\pi
992992 0.0924143 0.0818719i 0.0924143 0.0818719i
993993 0 0
994994 0 0
995995 −0.381457 + 0.847562i −0.381457 + 0.847562i
996996 0 0
997997 0 0 0.239316 0.970942i 0.423077π-0.423077\pi
−0.239316 + 0.970942i 0.576923π0.576923\pi
998998 0.274355 + 0.522740i 0.274355 + 0.522740i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2385.1.ca.a.2359.2 yes 48
3.2 odd 2 inner 2385.1.ca.a.2359.1 yes 48
5.4 even 2 inner 2385.1.ca.a.2359.1 yes 48
15.14 odd 2 CM 2385.1.ca.a.2359.2 yes 48
53.2 odd 52 inner 2385.1.ca.a.1009.1 48
159.2 even 52 inner 2385.1.ca.a.1009.2 yes 48
265.214 odd 52 inner 2385.1.ca.a.1009.2 yes 48
795.479 even 52 inner 2385.1.ca.a.1009.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2385.1.ca.a.1009.1 48 53.2 odd 52 inner
2385.1.ca.a.1009.1 48 795.479 even 52 inner
2385.1.ca.a.1009.2 yes 48 159.2 even 52 inner
2385.1.ca.a.1009.2 yes 48 265.214 odd 52 inner
2385.1.ca.a.2359.1 yes 48 3.2 odd 2 inner
2385.1.ca.a.2359.1 yes 48 5.4 even 2 inner
2385.1.ca.a.2359.2 yes 48 1.1 even 1 trivial
2385.1.ca.a.2359.2 yes 48 15.14 odd 2 CM