L(s) = 1 | + (2.72 + 1.26i)3-s + (0.689 + 4.95i)5-s + 0.735i·7-s + (5.82 + 6.86i)9-s − 10.9i·11-s + 21.1i·13-s + (−4.36 + 14.3i)15-s + 7.03·17-s − 23.1·19-s + (−0.927 + 2.00i)21-s + 24.7·23-s + (−24.0 + 6.82i)25-s + (7.21 + 26.0i)27-s − 32.3i·29-s + 34.9·31-s + ⋯ |
L(s) = 1 | + (0.907 + 0.420i)3-s + (0.137 + 0.990i)5-s + 0.105i·7-s + (0.647 + 0.762i)9-s − 0.995i·11-s + 1.63i·13-s + (−0.290 + 0.956i)15-s + 0.413·17-s − 1.21·19-s + (−0.0441 + 0.0953i)21-s + 1.07·23-s + (−0.962 + 0.272i)25-s + (0.267 + 0.963i)27-s − 1.11i·29-s + 1.12·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.290 - 0.956i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.290 - 0.956i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.70071 + 1.26042i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.70071 + 1.26042i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-2.72 - 1.26i)T \) |
| 5 | \( 1 + (-0.689 - 4.95i)T \) |
good | 7 | \( 1 - 0.735iT - 49T^{2} \) |
| 11 | \( 1 + 10.9iT - 121T^{2} \) |
| 13 | \( 1 - 21.1iT - 169T^{2} \) |
| 17 | \( 1 - 7.03T + 289T^{2} \) |
| 19 | \( 1 + 23.1T + 361T^{2} \) |
| 23 | \( 1 - 24.7T + 529T^{2} \) |
| 29 | \( 1 + 32.3iT - 841T^{2} \) |
| 31 | \( 1 - 34.9T + 961T^{2} \) |
| 37 | \( 1 - 37.7iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 39.0iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 22.6iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 39.1T + 2.20e3T^{2} \) |
| 53 | \( 1 - 60.9T + 2.80e3T^{2} \) |
| 59 | \( 1 + 7.79iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 11.1T + 3.72e3T^{2} \) |
| 67 | \( 1 + 33.3iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 96.9iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 134. iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 121.T + 6.24e3T^{2} \) |
| 83 | \( 1 - 90.2T + 6.88e3T^{2} \) |
| 89 | \( 1 + 53.1iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 115. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.92820406879090015613380192215, −10.98944256544482091609638764185, −10.17101948471627224096882703597, −9.146141449365194004868150208151, −8.337979875746491290769671359596, −7.11534549136330142561051217976, −6.16812067144814244239224753255, −4.47300513952570861959167376055, −3.33616271212771172498748246617, −2.16360506762907009292377625240,
1.13153909278530656020438027361, 2.69305804150334810322208699481, 4.19912853520508416482519914433, 5.40274025295582675172243001471, 6.87688662876727243795424864634, 7.947978294316490142004614910041, 8.640671075220997165557870266970, 9.653800432760662377675457586002, 10.51327971036299396142305703012, 12.11889361863236319537951581633