Properties

Label 2-245-1.1-c9-0-1
Degree $2$
Conductor $245$
Sign $1$
Analytic cond. $126.183$
Root an. cond. $11.2331$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 24.3·2-s + 124.·3-s + 81.4·4-s − 625·5-s − 3.03e3·6-s + 1.04e4·8-s − 4.14e3·9-s + 1.52e4·10-s − 7.91e4·11-s + 1.01e4·12-s − 1.58e5·13-s − 7.79e4·15-s − 2.97e5·16-s − 4.86e5·17-s + 1.00e5·18-s + 2.09e5·19-s − 5.09e4·20-s + 1.92e6·22-s − 1.31e6·23-s + 1.30e6·24-s + 3.90e5·25-s + 3.86e6·26-s − 2.97e6·27-s − 5.04e6·29-s + 1.89e6·30-s + 6.50e6·31-s + 1.87e6·32-s + ⋯
L(s)  = 1  − 1.07·2-s + 0.888·3-s + 0.159·4-s − 0.447·5-s − 0.956·6-s + 0.905·8-s − 0.210·9-s + 0.481·10-s − 1.63·11-s + 0.141·12-s − 1.54·13-s − 0.397·15-s − 1.13·16-s − 1.41·17-s + 0.226·18-s + 0.368·19-s − 0.0711·20-s + 1.75·22-s − 0.977·23-s + 0.804·24-s + 0.200·25-s + 1.65·26-s − 1.07·27-s − 1.32·29-s + 0.427·30-s + 1.26·31-s + 0.315·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(245\)    =    \(5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(126.183\)
Root analytic conductor: \(11.2331\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 245,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(0.07487488823\)
\(L(\frac12)\) \(\approx\) \(0.07487488823\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 625T \)
7 \( 1 \)
good2 \( 1 + 24.3T + 512T^{2} \)
3 \( 1 - 124.T + 1.96e4T^{2} \)
11 \( 1 + 7.91e4T + 2.35e9T^{2} \)
13 \( 1 + 1.58e5T + 1.06e10T^{2} \)
17 \( 1 + 4.86e5T + 1.18e11T^{2} \)
19 \( 1 - 2.09e5T + 3.22e11T^{2} \)
23 \( 1 + 1.31e6T + 1.80e12T^{2} \)
29 \( 1 + 5.04e6T + 1.45e13T^{2} \)
31 \( 1 - 6.50e6T + 2.64e13T^{2} \)
37 \( 1 + 1.80e7T + 1.29e14T^{2} \)
41 \( 1 + 3.96e6T + 3.27e14T^{2} \)
43 \( 1 - 2.68e7T + 5.02e14T^{2} \)
47 \( 1 + 1.26e7T + 1.11e15T^{2} \)
53 \( 1 - 1.02e8T + 3.29e15T^{2} \)
59 \( 1 + 8.22e7T + 8.66e15T^{2} \)
61 \( 1 + 2.00e8T + 1.16e16T^{2} \)
67 \( 1 - 1.30e8T + 2.72e16T^{2} \)
71 \( 1 + 1.63e8T + 4.58e16T^{2} \)
73 \( 1 - 4.12e8T + 5.88e16T^{2} \)
79 \( 1 + 1.90e8T + 1.19e17T^{2} \)
83 \( 1 + 4.76e8T + 1.86e17T^{2} \)
89 \( 1 + 6.55e8T + 3.50e17T^{2} \)
97 \( 1 + 1.18e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.20591321999501514505852337993, −9.392150382177570903200942609418, −8.504596384598403676559619641466, −7.82641669949135520808248499292, −7.18012742977431923258669689751, −5.31774944193422545142627735203, −4.26033432915494265359763872974, −2.75224910115996253884463233877, −2.02235831601865576200366073674, −0.13183067036663518930499069917, 0.13183067036663518930499069917, 2.02235831601865576200366073674, 2.75224910115996253884463233877, 4.26033432915494265359763872974, 5.31774944193422545142627735203, 7.18012742977431923258669689751, 7.82641669949135520808248499292, 8.504596384598403676559619641466, 9.392150382177570903200942609418, 10.20591321999501514505852337993

Graph of the $Z$-function along the critical line