Properties

Label 2-245-1.1-c9-0-28
Degree $2$
Conductor $245$
Sign $1$
Analytic cond. $126.183$
Root an. cond. $11.2331$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 21.3·2-s + 190.·3-s − 57.2·4-s + 625·5-s − 4.05e3·6-s + 1.21e4·8-s + 1.64e4·9-s − 1.33e4·10-s − 7.98e4·11-s − 1.08e4·12-s − 1.48e5·13-s + 1.18e5·15-s − 2.29e5·16-s − 1.96e5·17-s − 3.50e5·18-s − 7.43e5·19-s − 3.58e4·20-s + 1.70e6·22-s + 1.25e6·23-s + 2.30e6·24-s + 3.90e5·25-s + 3.16e6·26-s − 6.16e5·27-s + 4.19e6·29-s − 2.53e6·30-s − 6.78e6·31-s − 1.32e6·32-s + ⋯
L(s)  = 1  − 0.942·2-s + 1.35·3-s − 0.111·4-s + 0.447·5-s − 1.27·6-s + 1.04·8-s + 0.835·9-s − 0.421·10-s − 1.64·11-s − 0.151·12-s − 1.43·13-s + 0.605·15-s − 0.875·16-s − 0.571·17-s − 0.787·18-s − 1.30·19-s − 0.0500·20-s + 1.55·22-s + 0.937·23-s + 1.41·24-s + 0.200·25-s + 1.35·26-s − 0.223·27-s + 1.10·29-s − 0.570·30-s − 1.32·31-s − 0.222·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(245\)    =    \(5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(126.183\)
Root analytic conductor: \(11.2331\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 245,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(1.335709453\)
\(L(\frac12)\) \(\approx\) \(1.335709453\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 625T \)
7 \( 1 \)
good2 \( 1 + 21.3T + 512T^{2} \)
3 \( 1 - 190.T + 1.96e4T^{2} \)
11 \( 1 + 7.98e4T + 2.35e9T^{2} \)
13 \( 1 + 1.48e5T + 1.06e10T^{2} \)
17 \( 1 + 1.96e5T + 1.18e11T^{2} \)
19 \( 1 + 7.43e5T + 3.22e11T^{2} \)
23 \( 1 - 1.25e6T + 1.80e12T^{2} \)
29 \( 1 - 4.19e6T + 1.45e13T^{2} \)
31 \( 1 + 6.78e6T + 2.64e13T^{2} \)
37 \( 1 - 9.11e6T + 1.29e14T^{2} \)
41 \( 1 - 1.68e7T + 3.27e14T^{2} \)
43 \( 1 - 1.19e7T + 5.02e14T^{2} \)
47 \( 1 - 5.48e7T + 1.11e15T^{2} \)
53 \( 1 - 3.28e7T + 3.29e15T^{2} \)
59 \( 1 - 7.27e7T + 8.66e15T^{2} \)
61 \( 1 - 1.26e8T + 1.16e16T^{2} \)
67 \( 1 - 8.96e7T + 2.72e16T^{2} \)
71 \( 1 - 1.94e8T + 4.58e16T^{2} \)
73 \( 1 + 2.22e8T + 5.88e16T^{2} \)
79 \( 1 - 2.27e8T + 1.19e17T^{2} \)
83 \( 1 + 1.48e7T + 1.86e17T^{2} \)
89 \( 1 + 4.47e8T + 3.50e17T^{2} \)
97 \( 1 - 6.78e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.18306327133243174763228969474, −9.327627759326594224169293412709, −8.657062707340141613661500795380, −7.84109814113098251682989450912, −7.11602023002424458840074167344, −5.29388909936135492761886356124, −4.25490167163713234800179354341, −2.56967521334732639926030776139, −2.22049919164464199768366608518, −0.54634292115906621555041427605, 0.54634292115906621555041427605, 2.22049919164464199768366608518, 2.56967521334732639926030776139, 4.25490167163713234800179354341, 5.29388909936135492761886356124, 7.11602023002424458840074167344, 7.84109814113098251682989450912, 8.657062707340141613661500795380, 9.327627759326594224169293412709, 10.18306327133243174763228969474

Graph of the $Z$-function along the critical line