L(s) = 1 | − 21.3·2-s + 190.·3-s − 57.2·4-s + 625·5-s − 4.05e3·6-s + 1.21e4·8-s + 1.64e4·9-s − 1.33e4·10-s − 7.98e4·11-s − 1.08e4·12-s − 1.48e5·13-s + 1.18e5·15-s − 2.29e5·16-s − 1.96e5·17-s − 3.50e5·18-s − 7.43e5·19-s − 3.58e4·20-s + 1.70e6·22-s + 1.25e6·23-s + 2.30e6·24-s + 3.90e5·25-s + 3.16e6·26-s − 6.16e5·27-s + 4.19e6·29-s − 2.53e6·30-s − 6.78e6·31-s − 1.32e6·32-s + ⋯ |
L(s) = 1 | − 0.942·2-s + 1.35·3-s − 0.111·4-s + 0.447·5-s − 1.27·6-s + 1.04·8-s + 0.835·9-s − 0.421·10-s − 1.64·11-s − 0.151·12-s − 1.43·13-s + 0.605·15-s − 0.875·16-s − 0.571·17-s − 0.787·18-s − 1.30·19-s − 0.0500·20-s + 1.55·22-s + 0.937·23-s + 1.41·24-s + 0.200·25-s + 1.35·26-s − 0.223·27-s + 1.10·29-s − 0.570·30-s − 1.32·31-s − 0.222·32-s + ⋯ |
Λ(s)=(=(245s/2ΓC(s)L(s)Λ(10−s)
Λ(s)=(=(245s/2ΓC(s+9/2)L(s)Λ(1−s)
Particular Values
L(5) |
≈ |
1.335709453 |
L(21) |
≈ |
1.335709453 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1−625T |
| 7 | 1 |
good | 2 | 1+21.3T+512T2 |
| 3 | 1−190.T+1.96e4T2 |
| 11 | 1+7.98e4T+2.35e9T2 |
| 13 | 1+1.48e5T+1.06e10T2 |
| 17 | 1+1.96e5T+1.18e11T2 |
| 19 | 1+7.43e5T+3.22e11T2 |
| 23 | 1−1.25e6T+1.80e12T2 |
| 29 | 1−4.19e6T+1.45e13T2 |
| 31 | 1+6.78e6T+2.64e13T2 |
| 37 | 1−9.11e6T+1.29e14T2 |
| 41 | 1−1.68e7T+3.27e14T2 |
| 43 | 1−1.19e7T+5.02e14T2 |
| 47 | 1−5.48e7T+1.11e15T2 |
| 53 | 1−3.28e7T+3.29e15T2 |
| 59 | 1−7.27e7T+8.66e15T2 |
| 61 | 1−1.26e8T+1.16e16T2 |
| 67 | 1−8.96e7T+2.72e16T2 |
| 71 | 1−1.94e8T+4.58e16T2 |
| 73 | 1+2.22e8T+5.88e16T2 |
| 79 | 1−2.27e8T+1.19e17T2 |
| 83 | 1+1.48e7T+1.86e17T2 |
| 89 | 1+4.47e8T+3.50e17T2 |
| 97 | 1−6.78e8T+7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.18306327133243174763228969474, −9.327627759326594224169293412709, −8.657062707340141613661500795380, −7.84109814113098251682989450912, −7.11602023002424458840074167344, −5.29388909936135492761886356124, −4.25490167163713234800179354341, −2.56967521334732639926030776139, −2.22049919164464199768366608518, −0.54634292115906621555041427605,
0.54634292115906621555041427605, 2.22049919164464199768366608518, 2.56967521334732639926030776139, 4.25490167163713234800179354341, 5.29388909936135492761886356124, 7.11602023002424458840074167344, 7.84109814113098251682989450912, 8.657062707340141613661500795380, 9.327627759326594224169293412709, 10.18306327133243174763228969474