L(s) = 1 | + (−0.421 + 0.571i)2-s + (−0.246 + 0.0466i)3-s + (0.440 + 1.42i)4-s + (2.22 + 0.262i)5-s + (0.0773 − 0.160i)6-s + (2.64 − 0.120i)7-s + (−2.34 − 0.820i)8-s + (−2.73 + 1.07i)9-s + (−1.08 + 1.15i)10-s + (0.529 − 1.34i)11-s + (−0.175 − 0.331i)12-s + (3.28 + 0.370i)13-s + (−1.04 + 1.56i)14-s + (−0.559 + 0.0388i)15-s + (−1.01 + 0.690i)16-s + (−0.630 − 0.0235i)17-s + ⋯ |
L(s) = 1 | + (−0.298 + 0.404i)2-s + (−0.142 + 0.0269i)3-s + (0.220 + 0.714i)4-s + (0.993 + 0.117i)5-s + (0.0315 − 0.0655i)6-s + (0.998 − 0.0456i)7-s + (−0.828 − 0.289i)8-s + (−0.911 + 0.357i)9-s + (−0.343 + 0.366i)10-s + (0.159 − 0.406i)11-s + (−0.0505 − 0.0957i)12-s + (0.910 + 0.102i)13-s + (−0.279 + 0.417i)14-s + (−0.144 + 0.0100i)15-s + (−0.253 + 0.172i)16-s + (−0.152 − 0.00572i)17-s + ⋯ |
Λ(s)=(=(245s/2ΓC(s)L(s)(0.297−0.954i)Λ(2−s)
Λ(s)=(=(245s/2ΓC(s+1/2)L(s)(0.297−0.954i)Λ(1−s)
Degree: |
2 |
Conductor: |
245
= 5⋅72
|
Sign: |
0.297−0.954i
|
Analytic conductor: |
1.95633 |
Root analytic conductor: |
1.39869 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ245(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 245, ( :1/2), 0.297−0.954i)
|
Particular Values
L(1) |
≈ |
1.02307+0.752733i |
L(21) |
≈ |
1.02307+0.752733i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−2.22−0.262i)T |
| 7 | 1+(−2.64+0.120i)T |
good | 2 | 1+(0.421−0.571i)T+(−0.589−1.91i)T2 |
| 3 | 1+(0.246−0.0466i)T+(2.79−1.09i)T2 |
| 11 | 1+(−0.529+1.34i)T+(−8.06−7.48i)T2 |
| 13 | 1+(−3.28−0.370i)T+(12.6+2.89i)T2 |
| 17 | 1+(0.630+0.0235i)T+(16.9+1.27i)T2 |
| 19 | 1+(1.79−3.10i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−0.0779−2.08i)T+(−22.9+1.71i)T2 |
| 29 | 1+(0.472−0.107i)T+(26.1−12.5i)T2 |
| 31 | 1+(5.64−3.25i)T+(15.5−26.8i)T2 |
| 37 | 1+(−6.99+3.69i)T+(20.8−30.5i)T2 |
| 41 | 1+(4.67+9.70i)T+(−25.5+32.0i)T2 |
| 43 | 1+(4.24+12.1i)T+(−33.6+26.8i)T2 |
| 47 | 1+(−1.53−1.13i)T+(13.8+44.9i)T2 |
| 53 | 1+(−1.05−0.557i)T+(29.8+43.7i)T2 |
| 59 | 1+(0.818+10.9i)T+(−58.3+8.79i)T2 |
| 61 | 1+(3.36−10.9i)T+(−50.4−34.3i)T2 |
| 67 | 1+(−4.90−1.31i)T+(58.0+33.5i)T2 |
| 71 | 1+(−1.90+8.35i)T+(−63.9−30.8i)T2 |
| 73 | 1+(0.574−0.424i)T+(21.5−69.7i)T2 |
| 79 | 1+(8.89+5.13i)T+(39.5+68.4i)T2 |
| 83 | 1+(1.25+11.1i)T+(−80.9+18.4i)T2 |
| 89 | 1+(−3.16−8.07i)T+(−65.2+60.5i)T2 |
| 97 | 1+(−6.86−6.86i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.17327565174953096292211043285, −11.24049950565783350153514839445, −10.55493946890192005220020367474, −8.965779335543883632647788019908, −8.527546133928515235295103672279, −7.40628348131077522826873984565, −6.18638171874793030052514195854, −5.38492810982080751450320079634, −3.62975001052423597817956947000, −2.07038022591944037916365140796,
1.35545694658076012940219470133, 2.63733332337251842759318066888, 4.77502228234619983121960694797, 5.81961700527345536521701207216, 6.55591996534890668364474488864, 8.319796317392223304207199935505, 9.127008183001210530996366308169, 10.00584761192644607216704929770, 11.17782204643352514113980634081, 11.37682255114319400341316314292