L(s) = 1 | + (−0.421 − 0.571i)2-s + (−0.246 − 0.0466i)3-s + (0.440 − 1.42i)4-s + (2.22 − 0.262i)5-s + (0.0773 + 0.160i)6-s + (2.64 + 0.120i)7-s + (−2.34 + 0.820i)8-s + (−2.73 − 1.07i)9-s + (−1.08 − 1.15i)10-s + (0.529 + 1.34i)11-s + (−0.175 + 0.331i)12-s + (3.28 − 0.370i)13-s + (−1.04 − 1.56i)14-s + (−0.559 − 0.0388i)15-s + (−1.01 − 0.690i)16-s + (−0.630 + 0.0235i)17-s + ⋯ |
L(s) = 1 | + (−0.298 − 0.404i)2-s + (−0.142 − 0.0269i)3-s + (0.220 − 0.714i)4-s + (0.993 − 0.117i)5-s + (0.0315 + 0.0655i)6-s + (0.998 + 0.0456i)7-s + (−0.828 + 0.289i)8-s + (−0.911 − 0.357i)9-s + (−0.343 − 0.366i)10-s + (0.159 + 0.406i)11-s + (−0.0505 + 0.0957i)12-s + (0.910 − 0.102i)13-s + (−0.279 − 0.417i)14-s + (−0.144 − 0.0100i)15-s + (−0.253 − 0.172i)16-s + (−0.152 + 0.00572i)17-s + ⋯ |
Λ(s)=(=(245s/2ΓC(s)L(s)(0.297+0.954i)Λ(2−s)
Λ(s)=(=(245s/2ΓC(s+1/2)L(s)(0.297+0.954i)Λ(1−s)
Degree: |
2 |
Conductor: |
245
= 5⋅72
|
Sign: |
0.297+0.954i
|
Analytic conductor: |
1.95633 |
Root analytic conductor: |
1.39869 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ245(157,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 245, ( :1/2), 0.297+0.954i)
|
Particular Values
L(1) |
≈ |
1.02307−0.752733i |
L(21) |
≈ |
1.02307−0.752733i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−2.22+0.262i)T |
| 7 | 1+(−2.64−0.120i)T |
good | 2 | 1+(0.421+0.571i)T+(−0.589+1.91i)T2 |
| 3 | 1+(0.246+0.0466i)T+(2.79+1.09i)T2 |
| 11 | 1+(−0.529−1.34i)T+(−8.06+7.48i)T2 |
| 13 | 1+(−3.28+0.370i)T+(12.6−2.89i)T2 |
| 17 | 1+(0.630−0.0235i)T+(16.9−1.27i)T2 |
| 19 | 1+(1.79+3.10i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−0.0779+2.08i)T+(−22.9−1.71i)T2 |
| 29 | 1+(0.472+0.107i)T+(26.1+12.5i)T2 |
| 31 | 1+(5.64+3.25i)T+(15.5+26.8i)T2 |
| 37 | 1+(−6.99−3.69i)T+(20.8+30.5i)T2 |
| 41 | 1+(4.67−9.70i)T+(−25.5−32.0i)T2 |
| 43 | 1+(4.24−12.1i)T+(−33.6−26.8i)T2 |
| 47 | 1+(−1.53+1.13i)T+(13.8−44.9i)T2 |
| 53 | 1+(−1.05+0.557i)T+(29.8−43.7i)T2 |
| 59 | 1+(0.818−10.9i)T+(−58.3−8.79i)T2 |
| 61 | 1+(3.36+10.9i)T+(−50.4+34.3i)T2 |
| 67 | 1+(−4.90+1.31i)T+(58.0−33.5i)T2 |
| 71 | 1+(−1.90−8.35i)T+(−63.9+30.8i)T2 |
| 73 | 1+(0.574+0.424i)T+(21.5+69.7i)T2 |
| 79 | 1+(8.89−5.13i)T+(39.5−68.4i)T2 |
| 83 | 1+(1.25−11.1i)T+(−80.9−18.4i)T2 |
| 89 | 1+(−3.16+8.07i)T+(−65.2−60.5i)T2 |
| 97 | 1+(−6.86+6.86i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.37682255114319400341316314292, −11.17782204643352514113980634081, −10.00584761192644607216704929770, −9.127008183001210530996366308169, −8.319796317392223304207199935505, −6.55591996534890668364474488864, −5.81961700527345536521701207216, −4.77502228234619983121960694797, −2.63733332337251842759318066888, −1.35545694658076012940219470133,
2.07038022591944037916365140796, 3.62975001052423597817956947000, 5.38492810982080751450320079634, 6.18638171874793030052514195854, 7.40628348131077522826873984565, 8.527546133928515235295103672279, 8.965779335543883632647788019908, 10.55493946890192005220020367474, 11.24049950565783350153514839445, 12.17327565174953096292211043285