Properties

Label 2-245-245.157-c1-0-13
Degree $2$
Conductor $245$
Sign $0.297 + 0.954i$
Analytic cond. $1.95633$
Root an. cond. $1.39869$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.421 − 0.571i)2-s + (−0.246 − 0.0466i)3-s + (0.440 − 1.42i)4-s + (2.22 − 0.262i)5-s + (0.0773 + 0.160i)6-s + (2.64 + 0.120i)7-s + (−2.34 + 0.820i)8-s + (−2.73 − 1.07i)9-s + (−1.08 − 1.15i)10-s + (0.529 + 1.34i)11-s + (−0.175 + 0.331i)12-s + (3.28 − 0.370i)13-s + (−1.04 − 1.56i)14-s + (−0.559 − 0.0388i)15-s + (−1.01 − 0.690i)16-s + (−0.630 + 0.0235i)17-s + ⋯
L(s)  = 1  + (−0.298 − 0.404i)2-s + (−0.142 − 0.0269i)3-s + (0.220 − 0.714i)4-s + (0.993 − 0.117i)5-s + (0.0315 + 0.0655i)6-s + (0.998 + 0.0456i)7-s + (−0.828 + 0.289i)8-s + (−0.911 − 0.357i)9-s + (−0.343 − 0.366i)10-s + (0.159 + 0.406i)11-s + (−0.0505 + 0.0957i)12-s + (0.910 − 0.102i)13-s + (−0.279 − 0.417i)14-s + (−0.144 − 0.0100i)15-s + (−0.253 − 0.172i)16-s + (−0.152 + 0.00572i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.297 + 0.954i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.297 + 0.954i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(245\)    =    \(5 \cdot 7^{2}\)
Sign: $0.297 + 0.954i$
Analytic conductor: \(1.95633\)
Root analytic conductor: \(1.39869\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{245} (157, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 245,\ (\ :1/2),\ 0.297 + 0.954i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.02307 - 0.752733i\)
\(L(\frac12)\) \(\approx\) \(1.02307 - 0.752733i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-2.22 + 0.262i)T \)
7 \( 1 + (-2.64 - 0.120i)T \)
good2 \( 1 + (0.421 + 0.571i)T + (-0.589 + 1.91i)T^{2} \)
3 \( 1 + (0.246 + 0.0466i)T + (2.79 + 1.09i)T^{2} \)
11 \( 1 + (-0.529 - 1.34i)T + (-8.06 + 7.48i)T^{2} \)
13 \( 1 + (-3.28 + 0.370i)T + (12.6 - 2.89i)T^{2} \)
17 \( 1 + (0.630 - 0.0235i)T + (16.9 - 1.27i)T^{2} \)
19 \( 1 + (1.79 + 3.10i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.0779 + 2.08i)T + (-22.9 - 1.71i)T^{2} \)
29 \( 1 + (0.472 + 0.107i)T + (26.1 + 12.5i)T^{2} \)
31 \( 1 + (5.64 + 3.25i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + (-6.99 - 3.69i)T + (20.8 + 30.5i)T^{2} \)
41 \( 1 + (4.67 - 9.70i)T + (-25.5 - 32.0i)T^{2} \)
43 \( 1 + (4.24 - 12.1i)T + (-33.6 - 26.8i)T^{2} \)
47 \( 1 + (-1.53 + 1.13i)T + (13.8 - 44.9i)T^{2} \)
53 \( 1 + (-1.05 + 0.557i)T + (29.8 - 43.7i)T^{2} \)
59 \( 1 + (0.818 - 10.9i)T + (-58.3 - 8.79i)T^{2} \)
61 \( 1 + (3.36 + 10.9i)T + (-50.4 + 34.3i)T^{2} \)
67 \( 1 + (-4.90 + 1.31i)T + (58.0 - 33.5i)T^{2} \)
71 \( 1 + (-1.90 - 8.35i)T + (-63.9 + 30.8i)T^{2} \)
73 \( 1 + (0.574 + 0.424i)T + (21.5 + 69.7i)T^{2} \)
79 \( 1 + (8.89 - 5.13i)T + (39.5 - 68.4i)T^{2} \)
83 \( 1 + (1.25 - 11.1i)T + (-80.9 - 18.4i)T^{2} \)
89 \( 1 + (-3.16 + 8.07i)T + (-65.2 - 60.5i)T^{2} \)
97 \( 1 + (-6.86 + 6.86i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.37682255114319400341316314292, −11.17782204643352514113980634081, −10.00584761192644607216704929770, −9.127008183001210530996366308169, −8.319796317392223304207199935505, −6.55591996534890668364474488864, −5.81961700527345536521701207216, −4.77502228234619983121960694797, −2.63733332337251842759318066888, −1.35545694658076012940219470133, 2.07038022591944037916365140796, 3.62975001052423597817956947000, 5.38492810982080751450320079634, 6.18638171874793030052514195854, 7.40628348131077522826873984565, 8.527546133928515235295103672279, 8.965779335543883632647788019908, 10.55493946890192005220020367474, 11.24049950565783350153514839445, 12.17327565174953096292211043285

Graph of the $Z$-function along the critical line