L(s) = 1 | + (−0.471 − 0.881i)2-s + (−0.831 + 0.555i)3-s + (−0.555 + 0.831i)4-s + (−1.72 + 0.344i)5-s + (0.881 + 0.471i)6-s + (0.995 + 0.0980i)8-s + (0.382 − 0.923i)9-s + (1.11 + 1.36i)10-s + (−0.108 + 0.162i)11-s − i·12-s + (0.980 + 0.195i)13-s + (1.24 − 1.24i)15-s + (−0.382 − 0.923i)16-s + (−0.995 + 0.0980i)18-s + (0.674 − 1.62i)20-s + ⋯ |
L(s) = 1 | + (−0.471 − 0.881i)2-s + (−0.831 + 0.555i)3-s + (−0.555 + 0.831i)4-s + (−1.72 + 0.344i)5-s + (0.881 + 0.471i)6-s + (0.995 + 0.0980i)8-s + (0.382 − 0.923i)9-s + (1.11 + 1.36i)10-s + (−0.108 + 0.162i)11-s − i·12-s + (0.980 + 0.195i)13-s + (1.24 − 1.24i)15-s + (−0.382 − 0.923i)16-s + (−0.995 + 0.0980i)18-s + (0.674 − 1.62i)20-s + ⋯ |
Λ(s)=(=(2496s/2ΓC(s)L(s)(−0.0980−0.995i)Λ(1−s)
Λ(s)=(=(2496s/2ΓC(s)L(s)(−0.0980−0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
2496
= 26⋅3⋅13
|
Sign: |
−0.0980−0.995i
|
Analytic conductor: |
1.24566 |
Root analytic conductor: |
1.11609 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2496(77,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2496, ( :0), −0.0980−0.995i)
|
Particular Values
L(21) |
≈ |
0.2659091981 |
L(21) |
≈ |
0.2659091981 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.471+0.881i)T |
| 3 | 1+(0.831−0.555i)T |
| 13 | 1+(−0.980−0.195i)T |
good | 5 | 1+(1.72−0.344i)T+(0.923−0.382i)T2 |
| 7 | 1+(0.707−0.707i)T2 |
| 11 | 1+(0.108−0.162i)T+(−0.382−0.923i)T2 |
| 17 | 1−iT2 |
| 19 | 1+(0.923+0.382i)T2 |
| 23 | 1+(−0.707−0.707i)T2 |
| 29 | 1+(0.382−0.923i)T2 |
| 31 | 1+T2 |
| 37 | 1+(0.923−0.382i)T2 |
| 41 | 1+(−0.536−0.222i)T+(0.707+0.707i)T2 |
| 43 | 1+(−0.324−0.216i)T+(0.382+0.923i)T2 |
| 47 | 1+(1.09+1.09i)T+iT2 |
| 53 | 1+(0.382+0.923i)T2 |
| 59 | 1+(0.924−0.183i)T+(0.923−0.382i)T2 |
| 61 | 1+(1.53−1.02i)T+(0.382−0.923i)T2 |
| 67 | 1+(−0.382+0.923i)T2 |
| 71 | 1+(−0.761−1.83i)T+(−0.707+0.707i)T2 |
| 73 | 1+(0.707+0.707i)T2 |
| 79 | 1+(0.275−0.275i)T−iT2 |
| 83 | 1+(0.373−1.87i)T+(−0.923−0.382i)T2 |
| 89 | 1+(−1.42+0.591i)T+(0.707−0.707i)T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.392306455193316000331527677319, −8.617770860050407655606497469873, −7.922583976881256315588940589668, −7.18229587729467657802515282489, −6.33668040844271933766059262995, −5.05364005716704274167607296360, −4.22424286204676531371942055114, −3.76009835798916428817294301529, −2.92181283095868249620818154914, −1.15258419804464861581908681857,
0.29617908706340276564080698536, 1.45776270866997950108013675034, 3.42010647005122127951423262173, 4.43186894267887498358314053488, 5.01300215354758411114108766862, 6.04149279134545352737000582685, 6.62952838870393028636565816863, 7.61496414265307545640756963918, 7.86614763824635975744495654515, 8.573274284387035547990493789044