L(s) = 1 | + (−0.471 − 0.881i)2-s + (−0.831 + 0.555i)3-s + (−0.555 + 0.831i)4-s + (−1.72 + 0.344i)5-s + (0.881 + 0.471i)6-s + (0.995 + 0.0980i)8-s + (0.382 − 0.923i)9-s + (1.11 + 1.36i)10-s + (−0.108 + 0.162i)11-s − i·12-s + (0.980 + 0.195i)13-s + (1.24 − 1.24i)15-s + (−0.382 − 0.923i)16-s + (−0.995 + 0.0980i)18-s + (0.674 − 1.62i)20-s + ⋯ |
L(s) = 1 | + (−0.471 − 0.881i)2-s + (−0.831 + 0.555i)3-s + (−0.555 + 0.831i)4-s + (−1.72 + 0.344i)5-s + (0.881 + 0.471i)6-s + (0.995 + 0.0980i)8-s + (0.382 − 0.923i)9-s + (1.11 + 1.36i)10-s + (−0.108 + 0.162i)11-s − i·12-s + (0.980 + 0.195i)13-s + (1.24 − 1.24i)15-s + (−0.382 − 0.923i)16-s + (−0.995 + 0.0980i)18-s + (0.674 − 1.62i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0980 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0980 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2659091981\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2659091981\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.471 + 0.881i)T \) |
| 3 | \( 1 + (0.831 - 0.555i)T \) |
| 13 | \( 1 + (-0.980 - 0.195i)T \) |
good | 5 | \( 1 + (1.72 - 0.344i)T + (0.923 - 0.382i)T^{2} \) |
| 7 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (0.108 - 0.162i)T + (-0.382 - 0.923i)T^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 23 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 29 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 41 | \( 1 + (-0.536 - 0.222i)T + (0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + (-0.324 - 0.216i)T + (0.382 + 0.923i)T^{2} \) |
| 47 | \( 1 + (1.09 + 1.09i)T + iT^{2} \) |
| 53 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 59 | \( 1 + (0.924 - 0.183i)T + (0.923 - 0.382i)T^{2} \) |
| 61 | \( 1 + (1.53 - 1.02i)T + (0.382 - 0.923i)T^{2} \) |
| 67 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 71 | \( 1 + (-0.761 - 1.83i)T + (-0.707 + 0.707i)T^{2} \) |
| 73 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 79 | \( 1 + (0.275 - 0.275i)T - iT^{2} \) |
| 83 | \( 1 + (0.373 - 1.87i)T + (-0.923 - 0.382i)T^{2} \) |
| 89 | \( 1 + (-1.42 + 0.591i)T + (0.707 - 0.707i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.392306455193316000331527677319, −8.617770860050407655606497469873, −7.922583976881256315588940589668, −7.18229587729467657802515282489, −6.33668040844271933766059262995, −5.05364005716704274167607296360, −4.22424286204676531371942055114, −3.76009835798916428817294301529, −2.92181283095868249620818154914, −1.15258419804464861581908681857,
0.29617908706340276564080698536, 1.45776270866997950108013675034, 3.42010647005122127951423262173, 4.43186894267887498358314053488, 5.01300215354758411114108766862, 6.04149279134545352737000582685, 6.62952838870393028636565816863, 7.61496414265307545640756963918, 7.86614763824635975744495654515, 8.573274284387035547990493789044