L(s) = 1 | + (0.222 − 0.974i)3-s + (−0.222 − 0.974i)4-s + (−0.137 + 0.602i)7-s + (−0.900 − 0.433i)9-s − 12-s + (1.45 − 0.702i)13-s + (−0.900 + 0.433i)16-s + (−0.360 − 1.57i)19-s + (0.556 + 0.268i)21-s + (−0.222 − 0.974i)25-s + (−0.623 + 0.781i)27-s + 0.618·28-s + (−0.385 + 0.483i)31-s + (−0.222 + 0.974i)36-s + (−1.45 − 0.702i)37-s + ⋯ |
L(s) = 1 | + (0.222 − 0.974i)3-s + (−0.222 − 0.974i)4-s + (−0.137 + 0.602i)7-s + (−0.900 − 0.433i)9-s − 12-s + (1.45 − 0.702i)13-s + (−0.900 + 0.433i)16-s + (−0.360 − 1.57i)19-s + (0.556 + 0.268i)21-s + (−0.222 − 0.974i)25-s + (−0.623 + 0.781i)27-s + 0.618·28-s + (−0.385 + 0.483i)31-s + (−0.222 + 0.974i)36-s + (−1.45 − 0.702i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.799 + 0.600i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.799 + 0.600i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.062019807\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.062019807\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.222 + 0.974i)T \) |
| 29 | \( 1 \) |
good | 2 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 5 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 7 | \( 1 + (0.137 - 0.602i)T + (-0.900 - 0.433i)T^{2} \) |
| 11 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 13 | \( 1 + (-1.45 + 0.702i)T + (0.623 - 0.781i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + (0.360 + 1.57i)T + (-0.900 + 0.433i)T^{2} \) |
| 23 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 31 | \( 1 + (0.385 - 0.483i)T + (-0.222 - 0.974i)T^{2} \) |
| 37 | \( 1 + (1.45 + 0.702i)T + (0.623 + 0.781i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + (0.385 + 0.483i)T + (-0.222 + 0.974i)T^{2} \) |
| 47 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 53 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (-0.137 + 0.602i)T + (-0.900 - 0.433i)T^{2} \) |
| 67 | \( 1 + (-1.45 - 0.702i)T + (0.623 + 0.781i)T^{2} \) |
| 71 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 73 | \( 1 + (-1.00 - 1.26i)T + (-0.222 + 0.974i)T^{2} \) |
| 79 | \( 1 + (1.45 + 0.702i)T + (0.623 + 0.781i)T^{2} \) |
| 83 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 89 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 97 | \( 1 + (-0.137 - 0.602i)T + (-0.900 + 0.433i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.719269721603570173781310991950, −8.277959037060116206959108451852, −7.03478464279088671034613109677, −6.50583995274447043944455641313, −5.73864635660222897462014068625, −5.17692532281506499739022334287, −3.88298804307348861220733058308, −2.76112606368006930134856483156, −1.85718642364433891097444640928, −0.68919741301323215836102271620,
1.82483046788889447936896001604, 3.30109526937671002171357154317, 3.73670710440203855398306936498, 4.31577758418334292058710297518, 5.38903018215547375727880013399, 6.30707818073237905693459084773, 7.23038715329502711906527708325, 8.153448204026573665598849787855, 8.565394140714248515088762549070, 9.330434680158206463753683081357