L(s) = 1 | + (0.222 + 0.974i)3-s + (−0.222 + 0.974i)4-s + (−0.137 − 0.602i)7-s + (−0.900 + 0.433i)9-s − 12-s + (1.45 + 0.702i)13-s + (−0.900 − 0.433i)16-s + (−0.360 + 1.57i)19-s + (0.556 − 0.268i)21-s + (−0.222 + 0.974i)25-s + (−0.623 − 0.781i)27-s + 0.618·28-s + (−0.385 − 0.483i)31-s + (−0.222 − 0.974i)36-s + (−1.45 + 0.702i)37-s + ⋯ |
L(s) = 1 | + (0.222 + 0.974i)3-s + (−0.222 + 0.974i)4-s + (−0.137 − 0.602i)7-s + (−0.900 + 0.433i)9-s − 12-s + (1.45 + 0.702i)13-s + (−0.900 − 0.433i)16-s + (−0.360 + 1.57i)19-s + (0.556 − 0.268i)21-s + (−0.222 + 0.974i)25-s + (−0.623 − 0.781i)27-s + 0.618·28-s + (−0.385 − 0.483i)31-s + (−0.222 − 0.974i)36-s + (−1.45 + 0.702i)37-s + ⋯ |
Λ(s)=(=(2523s/2ΓC(s)L(s)(−0.799−0.600i)Λ(1−s)
Λ(s)=(=(2523s/2ΓC(s)L(s)(−0.799−0.600i)Λ(1−s)
Degree: |
2 |
Conductor: |
2523
= 3⋅292
|
Sign: |
−0.799−0.600i
|
Analytic conductor: |
1.25914 |
Root analytic conductor: |
1.12211 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2523(1619,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2523, ( :0), −0.799−0.600i)
|
Particular Values
L(21) |
≈ |
1.062019807 |
L(21) |
≈ |
1.062019807 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.222−0.974i)T |
| 29 | 1 |
good | 2 | 1+(0.222−0.974i)T2 |
| 5 | 1+(0.222−0.974i)T2 |
| 7 | 1+(0.137+0.602i)T+(−0.900+0.433i)T2 |
| 11 | 1+(−0.623−0.781i)T2 |
| 13 | 1+(−1.45−0.702i)T+(0.623+0.781i)T2 |
| 17 | 1−T2 |
| 19 | 1+(0.360−1.57i)T+(−0.900−0.433i)T2 |
| 23 | 1+(0.222+0.974i)T2 |
| 31 | 1+(0.385+0.483i)T+(−0.222+0.974i)T2 |
| 37 | 1+(1.45−0.702i)T+(0.623−0.781i)T2 |
| 41 | 1−T2 |
| 43 | 1+(0.385−0.483i)T+(−0.222−0.974i)T2 |
| 47 | 1+(−0.623−0.781i)T2 |
| 53 | 1+(0.222−0.974i)T2 |
| 59 | 1−T2 |
| 61 | 1+(−0.137−0.602i)T+(−0.900+0.433i)T2 |
| 67 | 1+(−1.45+0.702i)T+(0.623−0.781i)T2 |
| 71 | 1+(−0.623−0.781i)T2 |
| 73 | 1+(−1.00+1.26i)T+(−0.222−0.974i)T2 |
| 79 | 1+(1.45−0.702i)T+(0.623−0.781i)T2 |
| 83 | 1+(0.900+0.433i)T2 |
| 89 | 1+(0.222−0.974i)T2 |
| 97 | 1+(−0.137+0.602i)T+(−0.900−0.433i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.330434680158206463753683081357, −8.565394140714248515088762549070, −8.153448204026573665598849787855, −7.23038715329502711906527708325, −6.30707818073237905693459084773, −5.38903018215547375727880013399, −4.31577758418334292058710297518, −3.73670710440203855398306936498, −3.30109526937671002171357154317, −1.82483046788889447936896001604,
0.68919741301323215836102271620, 1.85718642364433891097444640928, 2.76112606368006930134856483156, 3.88298804307348861220733058308, 5.17692532281506499739022334287, 5.73864635660222897462014068625, 6.50583995274447043944455641313, 7.03478464279088671034613109677, 8.277959037060116206959108451852, 8.719269721603570173781310991950