L(s) = 1 | + 2.50i·2-s + 5.31·3-s − 2.28·4-s − 8.14·5-s + 13.3i·6-s + 2.32i·7-s + 4.30i·8-s + 19.2·9-s − 20.4i·10-s + (7.69 + 7.86i)11-s − 12.1·12-s + 19.3i·13-s − 5.81·14-s − 43.2·15-s − 19.9·16-s − 26.1i·17-s + ⋯ |
L(s) = 1 | + 1.25i·2-s + 1.77·3-s − 0.570·4-s − 1.62·5-s + 2.22i·6-s + 0.331i·7-s + 0.538i·8-s + 2.13·9-s − 2.04i·10-s + (0.699 + 0.714i)11-s − 1.01·12-s + 1.48i·13-s − 0.415·14-s − 2.88·15-s − 1.24·16-s − 1.53i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.699 - 0.714i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.699 - 0.714i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.890319 + 2.11688i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.890319 + 2.11688i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 + (-7.69 - 7.86i)T \) |
| 23 | \( 1 + 4.79T \) |
good | 2 | \( 1 - 2.50iT - 4T^{2} \) |
| 3 | \( 1 - 5.31T + 9T^{2} \) |
| 5 | \( 1 + 8.14T + 25T^{2} \) |
| 7 | \( 1 - 2.32iT - 49T^{2} \) |
| 13 | \( 1 - 19.3iT - 169T^{2} \) |
| 17 | \( 1 + 26.1iT - 289T^{2} \) |
| 19 | \( 1 - 7.39iT - 361T^{2} \) |
| 29 | \( 1 + 21.0iT - 841T^{2} \) |
| 31 | \( 1 - 30.2T + 961T^{2} \) |
| 37 | \( 1 - 13.8T + 1.36e3T^{2} \) |
| 41 | \( 1 + 30.0iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 46.1iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 48.3T + 2.20e3T^{2} \) |
| 53 | \( 1 + 1.13T + 2.80e3T^{2} \) |
| 59 | \( 1 - 39.8T + 3.48e3T^{2} \) |
| 61 | \( 1 - 1.89iT - 3.72e3T^{2} \) |
| 67 | \( 1 - 102.T + 4.48e3T^{2} \) |
| 71 | \( 1 - 49.8T + 5.04e3T^{2} \) |
| 73 | \( 1 - 59.8iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 88.4iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 135. iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 144.T + 7.92e3T^{2} \) |
| 97 | \( 1 + 70.9T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.09134497795918491328802362858, −11.55530330369234034205248064327, −9.627282933948991772427892021429, −8.850058972109919690911569662437, −8.141510359458285501444807780191, −7.30415432636394492365815984329, −6.81965339818712239436725628499, −4.64532142321055983614402079052, −3.85770645624123102001027646231, −2.34341021226109657638981022335,
1.08764924655233489092839134305, 2.87722652645863949132567241150, 3.57094998948290198793304565761, 4.21257678042299103521895625796, 6.83637052941288898328376102951, 8.125857272042977522986899235993, 8.316805899768466941189248949048, 9.623886981881320243453453593398, 10.59741427894985310870383242108, 11.37415723534373899109338090153