L(s) = 1 | + 2.50i·2-s + 5.31·3-s − 2.28·4-s − 8.14·5-s + 13.3i·6-s + 2.32i·7-s + 4.30i·8-s + 19.2·9-s − 20.4i·10-s + (7.69 + 7.86i)11-s − 12.1·12-s + 19.3i·13-s − 5.81·14-s − 43.2·15-s − 19.9·16-s − 26.1i·17-s + ⋯ |
L(s) = 1 | + 1.25i·2-s + 1.77·3-s − 0.570·4-s − 1.62·5-s + 2.22i·6-s + 0.331i·7-s + 0.538i·8-s + 2.13·9-s − 2.04i·10-s + (0.699 + 0.714i)11-s − 1.01·12-s + 1.48i·13-s − 0.415·14-s − 2.88·15-s − 1.24·16-s − 1.53i·17-s + ⋯ |
Λ(s)=(=(253s/2ΓC(s)L(s)(−0.699−0.714i)Λ(3−s)
Λ(s)=(=(253s/2ΓC(s+1)L(s)(−0.699−0.714i)Λ(1−s)
Degree: |
2 |
Conductor: |
253
= 11⋅23
|
Sign: |
−0.699−0.714i
|
Analytic conductor: |
6.89375 |
Root analytic conductor: |
2.62559 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ253(208,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 253, ( :1), −0.699−0.714i)
|
Particular Values
L(23) |
≈ |
0.890319+2.11688i |
L(21) |
≈ |
0.890319+2.11688i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+(−7.69−7.86i)T |
| 23 | 1+4.79T |
good | 2 | 1−2.50iT−4T2 |
| 3 | 1−5.31T+9T2 |
| 5 | 1+8.14T+25T2 |
| 7 | 1−2.32iT−49T2 |
| 13 | 1−19.3iT−169T2 |
| 17 | 1+26.1iT−289T2 |
| 19 | 1−7.39iT−361T2 |
| 29 | 1+21.0iT−841T2 |
| 31 | 1−30.2T+961T2 |
| 37 | 1−13.8T+1.36e3T2 |
| 41 | 1+30.0iT−1.68e3T2 |
| 43 | 1+46.1iT−1.84e3T2 |
| 47 | 1+48.3T+2.20e3T2 |
| 53 | 1+1.13T+2.80e3T2 |
| 59 | 1−39.8T+3.48e3T2 |
| 61 | 1−1.89iT−3.72e3T2 |
| 67 | 1−102.T+4.48e3T2 |
| 71 | 1−49.8T+5.04e3T2 |
| 73 | 1−59.8iT−5.32e3T2 |
| 79 | 1+88.4iT−6.24e3T2 |
| 83 | 1+135.iT−6.88e3T2 |
| 89 | 1+144.T+7.92e3T2 |
| 97 | 1+70.9T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.09134497795918491328802362858, −11.55530330369234034205248064327, −9.627282933948991772427892021429, −8.850058972109919690911569662437, −8.141510359458285501444807780191, −7.30415432636394492365815984329, −6.81965339818712239436725628499, −4.64532142321055983614402079052, −3.85770645624123102001027646231, −2.34341021226109657638981022335,
1.08764924655233489092839134305, 2.87722652645863949132567241150, 3.57094998948290198793304565761, 4.21257678042299103521895625796, 6.83637052941288898328376102951, 8.125857272042977522986899235993, 8.316805899768466941189248949048, 9.623886981881320243453453593398, 10.59741427894985310870383242108, 11.37415723534373899109338090153