L(s) = 1 | + 3.71i·2-s − 2.82·3-s − 9.78·4-s + 2.21·5-s − 10.4i·6-s − 5.12i·7-s − 21.4i·8-s − 1.04·9-s + 8.23i·10-s + (9.16 − 6.08i)11-s + 27.5·12-s + 2.92i·13-s + 19.0·14-s − 6.25·15-s + 40.5·16-s − 12.0i·17-s + ⋯ |
L(s) = 1 | + 1.85i·2-s − 0.940·3-s − 2.44·4-s + 0.443·5-s − 1.74i·6-s − 0.731i·7-s − 2.68i·8-s − 0.116·9-s + 0.823i·10-s + (0.833 − 0.552i)11-s + 2.29·12-s + 0.224i·13-s + 1.35·14-s − 0.417·15-s + 2.53·16-s − 0.708i·17-s + ⋯ |
Λ(s)=(=(253s/2ΓC(s)L(s)(0.833−0.552i)Λ(3−s)
Λ(s)=(=(253s/2ΓC(s+1)L(s)(0.833−0.552i)Λ(1−s)
Degree: |
2 |
Conductor: |
253
= 11⋅23
|
Sign: |
0.833−0.552i
|
Analytic conductor: |
6.89375 |
Root analytic conductor: |
2.62559 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ253(208,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 253, ( :1), 0.833−0.552i)
|
Particular Values
L(23) |
≈ |
0.728182+0.219612i |
L(21) |
≈ |
0.728182+0.219612i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+(−9.16+6.08i)T |
| 23 | 1−4.79T |
good | 2 | 1−3.71iT−4T2 |
| 3 | 1+2.82T+9T2 |
| 5 | 1−2.21T+25T2 |
| 7 | 1+5.12iT−49T2 |
| 13 | 1−2.92iT−169T2 |
| 17 | 1+12.0iT−289T2 |
| 19 | 1+1.76iT−361T2 |
| 29 | 1+7.43iT−841T2 |
| 31 | 1+15.3T+961T2 |
| 37 | 1−53.4T+1.36e3T2 |
| 41 | 1+58.9iT−1.68e3T2 |
| 43 | 1+45.8iT−1.84e3T2 |
| 47 | 1−5.73T+2.20e3T2 |
| 53 | 1+90.1T+2.80e3T2 |
| 59 | 1−71.4T+3.48e3T2 |
| 61 | 1+26.1iT−3.72e3T2 |
| 67 | 1−20.7T+4.48e3T2 |
| 71 | 1−20.2T+5.04e3T2 |
| 73 | 1+111.iT−5.32e3T2 |
| 79 | 1+13.9iT−6.24e3T2 |
| 83 | 1+86.4iT−6.88e3T2 |
| 89 | 1+29.8T+7.92e3T2 |
| 97 | 1+79.0T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.96321346127232001150304740696, −10.88917940532138367055390119261, −9.639037637462278258577804394840, −8.833078479661988056831250284462, −7.62585763703528833947305867014, −6.70277060956268660832530640327, −5.98853632248213511284610531111, −5.14872496818217818719591101682, −3.97596178774092732395001198902, −0.50462492750501281215532622621,
1.35177480376511975819286678930, 2.67508913921440626306147032429, 4.14401827217144789117721412147, 5.29647434536082133590784330809, 6.25905593412270191987115921409, 8.287724653510086834304429259561, 9.368023867878179122570752503227, 9.977299358383131329194031286735, 11.12507649102234221088493935611, 11.53326798508993595030767083158