L(s) = 1 | − 0.919i·2-s + 4.75·3-s + 3.15·4-s + 0.241·5-s − 4.37i·6-s + 3.10i·7-s − 6.58i·8-s + 13.5·9-s − 0.222i·10-s + (−9.14 − 6.11i)11-s + 14.9·12-s + 4.95i·13-s + 2.85·14-s + 1.14·15-s + 6.56·16-s − 23.5i·17-s + ⋯ |
L(s) = 1 | − 0.459i·2-s + 1.58·3-s + 0.788·4-s + 0.0482·5-s − 0.728i·6-s + 0.442i·7-s − 0.822i·8-s + 1.51·9-s − 0.0222i·10-s + (−0.831 − 0.555i)11-s + 1.24·12-s + 0.381i·13-s + 0.203·14-s + 0.0764·15-s + 0.410·16-s − 1.38i·17-s + ⋯ |
Λ(s)=(=(253s/2ΓC(s)L(s)(0.831+0.555i)Λ(3−s)
Λ(s)=(=(253s/2ΓC(s+1)L(s)(0.831+0.555i)Λ(1−s)
Degree: |
2 |
Conductor: |
253
= 11⋅23
|
Sign: |
0.831+0.555i
|
Analytic conductor: |
6.89375 |
Root analytic conductor: |
2.62559 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ253(208,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 253, ( :1), 0.831+0.555i)
|
Particular Values
L(23) |
≈ |
2.89515−0.878949i |
L(21) |
≈ |
2.89515−0.878949i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+(9.14+6.11i)T |
| 23 | 1+4.79T |
good | 2 | 1+0.919iT−4T2 |
| 3 | 1−4.75T+9T2 |
| 5 | 1−0.241T+25T2 |
| 7 | 1−3.10iT−49T2 |
| 13 | 1−4.95iT−169T2 |
| 17 | 1+23.5iT−289T2 |
| 19 | 1−32.7iT−361T2 |
| 29 | 1−47.1iT−841T2 |
| 31 | 1−25.6T+961T2 |
| 37 | 1+50.3T+1.36e3T2 |
| 41 | 1+13.0iT−1.68e3T2 |
| 43 | 1+48.3iT−1.84e3T2 |
| 47 | 1−30.1T+2.20e3T2 |
| 53 | 1−5.53T+2.80e3T2 |
| 59 | 1+32.5T+3.48e3T2 |
| 61 | 1+83.2iT−3.72e3T2 |
| 67 | 1+127.T+4.48e3T2 |
| 71 | 1−40.3T+5.04e3T2 |
| 73 | 1−57.4iT−5.32e3T2 |
| 79 | 1−76.1iT−6.24e3T2 |
| 83 | 1−115.iT−6.88e3T2 |
| 89 | 1+46.9T+7.92e3T2 |
| 97 | 1+14.0T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.87301785884365088882484604140, −10.60640669257089214097638060410, −9.809514222917220888643040508072, −8.815165906130787124844207509896, −7.906655268231652601396316851394, −7.04911086322654761955146013953, −5.57184635051785182892599675976, −3.70579577909634079438928489912, −2.83138906507665687286175078273, −1.83555093570280436255096303003,
2.03120355382228717685456172265, 2.97827659073528614468808206168, 4.40254305238262775673651999358, 6.03816831448492554399296574476, 7.30974081044183680662355442856, 7.86697355310214587785178507125, 8.708875117910097327353508478672, 9.950363325042522800774025239588, 10.69392785495282160385174966683, 11.99797043027612119785203755669