L(s) = 1 | − 0.919i·2-s + 4.75·3-s + 3.15·4-s + 0.241·5-s − 4.37i·6-s + 3.10i·7-s − 6.58i·8-s + 13.5·9-s − 0.222i·10-s + (−9.14 − 6.11i)11-s + 14.9·12-s + 4.95i·13-s + 2.85·14-s + 1.14·15-s + 6.56·16-s − 23.5i·17-s + ⋯ |
L(s) = 1 | − 0.459i·2-s + 1.58·3-s + 0.788·4-s + 0.0482·5-s − 0.728i·6-s + 0.442i·7-s − 0.822i·8-s + 1.51·9-s − 0.0222i·10-s + (−0.831 − 0.555i)11-s + 1.24·12-s + 0.381i·13-s + 0.203·14-s + 0.0764·15-s + 0.410·16-s − 1.38i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.831 + 0.555i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.831 + 0.555i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.89515 - 0.878949i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.89515 - 0.878949i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 + (9.14 + 6.11i)T \) |
| 23 | \( 1 + 4.79T \) |
good | 2 | \( 1 + 0.919iT - 4T^{2} \) |
| 3 | \( 1 - 4.75T + 9T^{2} \) |
| 5 | \( 1 - 0.241T + 25T^{2} \) |
| 7 | \( 1 - 3.10iT - 49T^{2} \) |
| 13 | \( 1 - 4.95iT - 169T^{2} \) |
| 17 | \( 1 + 23.5iT - 289T^{2} \) |
| 19 | \( 1 - 32.7iT - 361T^{2} \) |
| 29 | \( 1 - 47.1iT - 841T^{2} \) |
| 31 | \( 1 - 25.6T + 961T^{2} \) |
| 37 | \( 1 + 50.3T + 1.36e3T^{2} \) |
| 41 | \( 1 + 13.0iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 48.3iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 30.1T + 2.20e3T^{2} \) |
| 53 | \( 1 - 5.53T + 2.80e3T^{2} \) |
| 59 | \( 1 + 32.5T + 3.48e3T^{2} \) |
| 61 | \( 1 + 83.2iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 127.T + 4.48e3T^{2} \) |
| 71 | \( 1 - 40.3T + 5.04e3T^{2} \) |
| 73 | \( 1 - 57.4iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 76.1iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 115. iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 46.9T + 7.92e3T^{2} \) |
| 97 | \( 1 + 14.0T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.87301785884365088882484604140, −10.60640669257089214097638060410, −9.809514222917220888643040508072, −8.815165906130787124844207509896, −7.906655268231652601396316851394, −7.04911086322654761955146013953, −5.57184635051785182892599675976, −3.70579577909634079438928489912, −2.83138906507665687286175078273, −1.83555093570280436255096303003,
2.03120355382228717685456172265, 2.97827659073528614468808206168, 4.40254305238262775673651999358, 6.03816831448492554399296574476, 7.30974081044183680662355442856, 7.86697355310214587785178507125, 8.708875117910097327353508478672, 9.950363325042522800774025239588, 10.69392785495282160385174966683, 11.99797043027612119785203755669