L(s) = 1 | − 1.15i·2-s + 2.03·3-s + 2.66·4-s − 8.63·5-s − 2.34i·6-s − 11.4i·7-s − 7.70i·8-s − 4.87·9-s + 9.97i·10-s + (−10.0 + 4.54i)11-s + 5.41·12-s + 13.8i·13-s − 13.2·14-s − 17.5·15-s + 1.75·16-s − 15.2i·17-s + ⋯ |
L(s) = 1 | − 0.577i·2-s + 0.677·3-s + 0.666·4-s − 1.72·5-s − 0.391i·6-s − 1.64i·7-s − 0.962i·8-s − 0.541·9-s + 0.997i·10-s + (−0.910 + 0.413i)11-s + 0.451·12-s + 1.06i·13-s − 0.948·14-s − 1.16·15-s + 0.109·16-s − 0.896i·17-s + ⋯ |
Λ(s)=(=(253s/2ΓC(s)L(s)(−0.910+0.413i)Λ(3−s)
Λ(s)=(=(253s/2ΓC(s+1)L(s)(−0.910+0.413i)Λ(1−s)
Degree: |
2 |
Conductor: |
253
= 11⋅23
|
Sign: |
−0.910+0.413i
|
Analytic conductor: |
6.89375 |
Root analytic conductor: |
2.62559 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ253(208,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 253, ( :1), −0.910+0.413i)
|
Particular Values
L(23) |
≈ |
0.248156−1.14679i |
L(21) |
≈ |
0.248156−1.14679i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+(10.0−4.54i)T |
| 23 | 1−4.79T |
good | 2 | 1+1.15iT−4T2 |
| 3 | 1−2.03T+9T2 |
| 5 | 1+8.63T+25T2 |
| 7 | 1+11.4iT−49T2 |
| 13 | 1−13.8iT−169T2 |
| 17 | 1+15.2iT−289T2 |
| 19 | 1+20.7iT−361T2 |
| 29 | 1+3.94iT−841T2 |
| 31 | 1−23.2T+961T2 |
| 37 | 1−8.15T+1.36e3T2 |
| 41 | 1+57.8iT−1.68e3T2 |
| 43 | 1−26.7iT−1.84e3T2 |
| 47 | 1−33.6T+2.20e3T2 |
| 53 | 1+36.1T+2.80e3T2 |
| 59 | 1−75.7T+3.48e3T2 |
| 61 | 1+8.02iT−3.72e3T2 |
| 67 | 1−87.9T+4.48e3T2 |
| 71 | 1+92.6T+5.04e3T2 |
| 73 | 1−29.3iT−5.32e3T2 |
| 79 | 1+59.4iT−6.24e3T2 |
| 83 | 1−138.iT−6.88e3T2 |
| 89 | 1−103.T+7.92e3T2 |
| 97 | 1+0.294T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.28996867588087863485119028505, −10.81858332346539464171007040902, −9.611114972535137210753534614827, −8.285719584314956869158737690626, −7.32452907911919048961393137115, −7.00789836602816516380089459930, −4.57532517162768516512494890044, −3.69963751770568574543801711943, −2.65788896685577646673971452066, −0.53007661579108166128813225438,
2.58129185142838703156570745255, 3.38918379580458723295999237943, 5.28597590580298054013400735640, 6.14025135347473913600510209914, 7.78935859365538656998239851622, 8.120543445770525780130191525937, 8.703843800992040330185163005712, 10.49481150467019142227437390282, 11.47903898955260195994098009310, 12.08111097593651240780614013565