L(s) = 1 | + 3.08i·2-s − 3.11·3-s − 5.53·4-s + 8.57·5-s − 9.62i·6-s + 4.55i·7-s − 4.72i·8-s + 0.725·9-s + 26.4i·10-s + (−9.41 + 5.68i)11-s + 17.2·12-s + 5.40i·13-s − 14.0·14-s − 26.7·15-s − 7.52·16-s + 30.3i·17-s + ⋯ |
L(s) = 1 | + 1.54i·2-s − 1.03·3-s − 1.38·4-s + 1.71·5-s − 1.60i·6-s + 0.650i·7-s − 0.591i·8-s + 0.0805·9-s + 2.64i·10-s + (−0.856 + 0.516i)11-s + 1.43·12-s + 0.415i·13-s − 1.00·14-s − 1.78·15-s − 0.470·16-s + 1.78i·17-s + ⋯ |
Λ(s)=(=(253s/2ΓC(s)L(s)(−0.856+0.516i)Λ(3−s)
Λ(s)=(=(253s/2ΓC(s+1)L(s)(−0.856+0.516i)Λ(1−s)
Degree: |
2 |
Conductor: |
253
= 11⋅23
|
Sign: |
−0.856+0.516i
|
Analytic conductor: |
6.89375 |
Root analytic conductor: |
2.62559 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ253(208,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 253, ( :1), −0.856+0.516i)
|
Particular Values
L(23) |
≈ |
0.269671−0.968965i |
L(21) |
≈ |
0.269671−0.968965i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+(9.41−5.68i)T |
| 23 | 1−4.79T |
good | 2 | 1−3.08iT−4T2 |
| 3 | 1+3.11T+9T2 |
| 5 | 1−8.57T+25T2 |
| 7 | 1−4.55iT−49T2 |
| 13 | 1−5.40iT−169T2 |
| 17 | 1−30.3iT−289T2 |
| 19 | 1+32.2iT−361T2 |
| 29 | 1+3.47iT−841T2 |
| 31 | 1+51.2T+961T2 |
| 37 | 1+47.7T+1.36e3T2 |
| 41 | 1−68.9iT−1.68e3T2 |
| 43 | 1+3.80iT−1.84e3T2 |
| 47 | 1+55.3T+2.20e3T2 |
| 53 | 1−45.7T+2.80e3T2 |
| 59 | 1−43.9T+3.48e3T2 |
| 61 | 1+17.4iT−3.72e3T2 |
| 67 | 1−78.2T+4.48e3T2 |
| 71 | 1−15.7T+5.04e3T2 |
| 73 | 1−66.2iT−5.32e3T2 |
| 79 | 1−66.9iT−6.24e3T2 |
| 83 | 1+38.9iT−6.88e3T2 |
| 89 | 1−70.6T+7.92e3T2 |
| 97 | 1−18.9T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.78942184027934712763236185441, −11.28700154645245989400242354966, −10.35484263417313479667147408652, −9.252706948469484873204621636431, −8.469084332820306287234311479429, −6.92590664920782996150993463584, −6.26339723422382665522198279345, −5.46676864245316316617613341406, −4.97905292984170535141348905873, −2.17960155854401817524238328853,
0.57082405665431678478609623005, 2.00768603141348098634055050725, 3.30777956580342262207839596300, 5.13970465782908961028460223738, 5.68060529945723533621318722615, 7.05848444205688183104029123733, 8.875060055284271929969341219954, 9.931270395932595027697752513269, 10.44194577106220172006192388899, 11.04930134974160605068578260490