L(s) = 1 | + 0.431i·2-s − 1.07·3-s + 3.81·4-s − 3.78·5-s − 0.463i·6-s + 1.98i·7-s + 3.37i·8-s − 7.84·9-s − 1.63i·10-s + (3.74 + 10.3i)11-s − 4.09·12-s + 10.8i·13-s − 0.856·14-s + 4.06·15-s + 13.8·16-s + 13.6i·17-s + ⋯ |
L(s) = 1 | + 0.215i·2-s − 0.358·3-s + 0.953·4-s − 0.756·5-s − 0.0772i·6-s + 0.283i·7-s + 0.421i·8-s − 0.871·9-s − 0.163i·10-s + (0.340 + 0.940i)11-s − 0.341·12-s + 0.835i·13-s − 0.0611·14-s + 0.270·15-s + 0.862·16-s + 0.803i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.340 - 0.940i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.340 - 0.940i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.666251 + 0.949385i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.666251 + 0.949385i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 + (-3.74 - 10.3i)T \) |
| 23 | \( 1 + 4.79T \) |
good | 2 | \( 1 - 0.431iT - 4T^{2} \) |
| 3 | \( 1 + 1.07T + 9T^{2} \) |
| 5 | \( 1 + 3.78T + 25T^{2} \) |
| 7 | \( 1 - 1.98iT - 49T^{2} \) |
| 13 | \( 1 - 10.8iT - 169T^{2} \) |
| 17 | \( 1 - 13.6iT - 289T^{2} \) |
| 19 | \( 1 + 5.19iT - 361T^{2} \) |
| 29 | \( 1 - 55.1iT - 841T^{2} \) |
| 31 | \( 1 + 0.0141T + 961T^{2} \) |
| 37 | \( 1 + 3.33T + 1.36e3T^{2} \) |
| 41 | \( 1 + 12.2iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 0.275iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 65.1T + 2.20e3T^{2} \) |
| 53 | \( 1 - 6.34T + 2.80e3T^{2} \) |
| 59 | \( 1 - 2.24T + 3.48e3T^{2} \) |
| 61 | \( 1 + 81.8iT - 3.72e3T^{2} \) |
| 67 | \( 1 - 36.3T + 4.48e3T^{2} \) |
| 71 | \( 1 - 54.9T + 5.04e3T^{2} \) |
| 73 | \( 1 + 70.4iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 105. iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 39.4iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 73.9T + 7.92e3T^{2} \) |
| 97 | \( 1 - 47.9T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.93879173483847517391524821647, −11.33913218256131308583492960709, −10.46853006107978624575186921465, −9.084480211818938385398500355323, −8.060885144961316918725155425198, −7.03188010513066811158141748947, −6.22840229144556150315435301613, −4.98745637307853400873892210617, −3.50596762190467335461259854644, −1.94492227284247683665236170164,
0.60393639772095317230579168136, 2.72963497503795060153477616871, 3.81380563216228147197269599477, 5.54075036021000908090973052271, 6.40101980880933382993347093661, 7.63619474098815650590354990283, 8.353241740430430316750408835551, 9.851087464131271696175332822004, 10.88218563008112405359940047994, 11.59152808767632855185407153807