L(s) = 1 | + 0.431i·2-s − 1.07·3-s + 3.81·4-s − 3.78·5-s − 0.463i·6-s + 1.98i·7-s + 3.37i·8-s − 7.84·9-s − 1.63i·10-s + (3.74 + 10.3i)11-s − 4.09·12-s + 10.8i·13-s − 0.856·14-s + 4.06·15-s + 13.8·16-s + 13.6i·17-s + ⋯ |
L(s) = 1 | + 0.215i·2-s − 0.358·3-s + 0.953·4-s − 0.756·5-s − 0.0772i·6-s + 0.283i·7-s + 0.421i·8-s − 0.871·9-s − 0.163i·10-s + (0.340 + 0.940i)11-s − 0.341·12-s + 0.835i·13-s − 0.0611·14-s + 0.270·15-s + 0.862·16-s + 0.803i·17-s + ⋯ |
Λ(s)=(=(253s/2ΓC(s)L(s)(−0.340−0.940i)Λ(3−s)
Λ(s)=(=(253s/2ΓC(s+1)L(s)(−0.340−0.940i)Λ(1−s)
Degree: |
2 |
Conductor: |
253
= 11⋅23
|
Sign: |
−0.340−0.940i
|
Analytic conductor: |
6.89375 |
Root analytic conductor: |
2.62559 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ253(208,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 253, ( :1), −0.340−0.940i)
|
Particular Values
L(23) |
≈ |
0.666251+0.949385i |
L(21) |
≈ |
0.666251+0.949385i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+(−3.74−10.3i)T |
| 23 | 1+4.79T |
good | 2 | 1−0.431iT−4T2 |
| 3 | 1+1.07T+9T2 |
| 5 | 1+3.78T+25T2 |
| 7 | 1−1.98iT−49T2 |
| 13 | 1−10.8iT−169T2 |
| 17 | 1−13.6iT−289T2 |
| 19 | 1+5.19iT−361T2 |
| 29 | 1−55.1iT−841T2 |
| 31 | 1+0.0141T+961T2 |
| 37 | 1+3.33T+1.36e3T2 |
| 41 | 1+12.2iT−1.68e3T2 |
| 43 | 1−0.275iT−1.84e3T2 |
| 47 | 1+65.1T+2.20e3T2 |
| 53 | 1−6.34T+2.80e3T2 |
| 59 | 1−2.24T+3.48e3T2 |
| 61 | 1+81.8iT−3.72e3T2 |
| 67 | 1−36.3T+4.48e3T2 |
| 71 | 1−54.9T+5.04e3T2 |
| 73 | 1+70.4iT−5.32e3T2 |
| 79 | 1+105.iT−6.24e3T2 |
| 83 | 1−39.4iT−6.88e3T2 |
| 89 | 1−73.9T+7.92e3T2 |
| 97 | 1−47.9T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.93879173483847517391524821647, −11.33913218256131308583492960709, −10.46853006107978624575186921465, −9.084480211818938385398500355323, −8.060885144961316918725155425198, −7.03188010513066811158141748947, −6.22840229144556150315435301613, −4.98745637307853400873892210617, −3.50596762190467335461259854644, −1.94492227284247683665236170164,
0.60393639772095317230579168136, 2.72963497503795060153477616871, 3.81380563216228147197269599477, 5.54075036021000908090973052271, 6.40101980880933382993347093661, 7.63619474098815650590354990283, 8.353241740430430316750408835551, 9.851087464131271696175332822004, 10.88218563008112405359940047994, 11.59152808767632855185407153807