L(s) = 1 | + (0.698 − 1.53i)3-s + (−0.959 + 0.281i)4-s + (0.186 − 0.215i)5-s + (−1.19 − 1.38i)9-s + (−0.142 + 0.989i)11-s + (−0.239 + 1.66i)12-s + (−0.198 − 0.435i)15-s + (0.841 − 0.540i)16-s + (−0.118 + 0.258i)20-s + (−0.142 + 0.989i)23-s + (0.130 + 0.909i)25-s + (−1.34 + 0.393i)27-s + (−0.544 − 1.19i)31-s + (1.41 + 0.909i)33-s + (1.54 + 0.989i)36-s + (1.25 + 1.45i)37-s + ⋯ |
L(s) = 1 | + (0.698 − 1.53i)3-s + (−0.959 + 0.281i)4-s + (0.186 − 0.215i)5-s + (−1.19 − 1.38i)9-s + (−0.142 + 0.989i)11-s + (−0.239 + 1.66i)12-s + (−0.198 − 0.435i)15-s + (0.841 − 0.540i)16-s + (−0.118 + 0.258i)20-s + (−0.142 + 0.989i)23-s + (0.130 + 0.909i)25-s + (−1.34 + 0.393i)27-s + (−0.544 − 1.19i)31-s + (1.41 + 0.909i)33-s + (1.54 + 0.989i)36-s + (1.25 + 1.45i)37-s + ⋯ |
Λ(s)=(=(253s/2ΓC(s)L(s)(0.381+0.924i)Λ(1−s)
Λ(s)=(=(253s/2ΓC(s)L(s)(0.381+0.924i)Λ(1−s)
Degree: |
2 |
Conductor: |
253
= 11⋅23
|
Sign: |
0.381+0.924i
|
Analytic conductor: |
0.126263 |
Root analytic conductor: |
0.355335 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ253(164,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 253, ( :0), 0.381+0.924i)
|
Particular Values
L(21) |
≈ |
0.7622589019 |
L(21) |
≈ |
0.7622589019 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+(0.142−0.989i)T |
| 23 | 1+(0.142−0.989i)T |
good | 2 | 1+(0.959−0.281i)T2 |
| 3 | 1+(−0.698+1.53i)T+(−0.654−0.755i)T2 |
| 5 | 1+(−0.186+0.215i)T+(−0.142−0.989i)T2 |
| 7 | 1+(−0.415+0.909i)T2 |
| 13 | 1+(−0.415−0.909i)T2 |
| 17 | 1+(−0.841−0.540i)T2 |
| 19 | 1+(−0.841+0.540i)T2 |
| 29 | 1+(−0.841−0.540i)T2 |
| 31 | 1+(0.544+1.19i)T+(−0.654+0.755i)T2 |
| 37 | 1+(−1.25−1.45i)T+(−0.142+0.989i)T2 |
| 41 | 1+(0.142+0.989i)T2 |
| 43 | 1+(0.654+0.755i)T2 |
| 47 | 1+1.30T+T2 |
| 53 | 1+(1.61−1.03i)T+(0.415−0.909i)T2 |
| 59 | 1+(1.61+1.03i)T+(0.415+0.909i)T2 |
| 61 | 1+(0.654−0.755i)T2 |
| 67 | 1+(0.239+1.66i)T+(−0.959+0.281i)T2 |
| 71 | 1+(−0.0405−0.281i)T+(−0.959+0.281i)T2 |
| 73 | 1+(−0.841+0.540i)T2 |
| 79 | 1+(−0.415−0.909i)T2 |
| 83 | 1+(0.142−0.989i)T2 |
| 89 | 1+(−0.698+1.53i)T+(−0.654−0.755i)T2 |
| 97 | 1+(−0.857+0.989i)T+(−0.142−0.989i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.49154366927145877277450247798, −11.51513193698249743325494190188, −9.748377989077920958412778338852, −9.117518297748097578961038873262, −7.947310992096860865403685019615, −7.51511919653137768636864798925, −6.20838038062075400816381662075, −4.80806915706543327818837999032, −3.25297195246930043817121171869, −1.68272420117990294505165198837,
2.96486559833008781205357508615, 4.06621496211129415832596826603, 4.96332786324097638901111599888, 6.08064293609029139551270269205, 8.074580207792284169757914988639, 8.818363654283799960990648776082, 9.522607472550855290831919765184, 10.42578848606262017158353264009, 10.98211323671080688402176227543, 12.61192772817713725273934437109