L(s) = 1 | + (0.698 − 1.53i)3-s + (−0.959 + 0.281i)4-s + (0.186 − 0.215i)5-s + (−1.19 − 1.38i)9-s + (−0.142 + 0.989i)11-s + (−0.239 + 1.66i)12-s + (−0.198 − 0.435i)15-s + (0.841 − 0.540i)16-s + (−0.118 + 0.258i)20-s + (−0.142 + 0.989i)23-s + (0.130 + 0.909i)25-s + (−1.34 + 0.393i)27-s + (−0.544 − 1.19i)31-s + (1.41 + 0.909i)33-s + (1.54 + 0.989i)36-s + (1.25 + 1.45i)37-s + ⋯ |
L(s) = 1 | + (0.698 − 1.53i)3-s + (−0.959 + 0.281i)4-s + (0.186 − 0.215i)5-s + (−1.19 − 1.38i)9-s + (−0.142 + 0.989i)11-s + (−0.239 + 1.66i)12-s + (−0.198 − 0.435i)15-s + (0.841 − 0.540i)16-s + (−0.118 + 0.258i)20-s + (−0.142 + 0.989i)23-s + (0.130 + 0.909i)25-s + (−1.34 + 0.393i)27-s + (−0.544 − 1.19i)31-s + (1.41 + 0.909i)33-s + (1.54 + 0.989i)36-s + (1.25 + 1.45i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.381 + 0.924i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.381 + 0.924i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7622589019\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7622589019\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 + (0.142 - 0.989i)T \) |
| 23 | \( 1 + (0.142 - 0.989i)T \) |
good | 2 | \( 1 + (0.959 - 0.281i)T^{2} \) |
| 3 | \( 1 + (-0.698 + 1.53i)T + (-0.654 - 0.755i)T^{2} \) |
| 5 | \( 1 + (-0.186 + 0.215i)T + (-0.142 - 0.989i)T^{2} \) |
| 7 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 13 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 17 | \( 1 + (-0.841 - 0.540i)T^{2} \) |
| 19 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 29 | \( 1 + (-0.841 - 0.540i)T^{2} \) |
| 31 | \( 1 + (0.544 + 1.19i)T + (-0.654 + 0.755i)T^{2} \) |
| 37 | \( 1 + (-1.25 - 1.45i)T + (-0.142 + 0.989i)T^{2} \) |
| 41 | \( 1 + (0.142 + 0.989i)T^{2} \) |
| 43 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 47 | \( 1 + 1.30T + T^{2} \) |
| 53 | \( 1 + (1.61 - 1.03i)T + (0.415 - 0.909i)T^{2} \) |
| 59 | \( 1 + (1.61 + 1.03i)T + (0.415 + 0.909i)T^{2} \) |
| 61 | \( 1 + (0.654 - 0.755i)T^{2} \) |
| 67 | \( 1 + (0.239 + 1.66i)T + (-0.959 + 0.281i)T^{2} \) |
| 71 | \( 1 + (-0.0405 - 0.281i)T + (-0.959 + 0.281i)T^{2} \) |
| 73 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 79 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 83 | \( 1 + (0.142 - 0.989i)T^{2} \) |
| 89 | \( 1 + (-0.698 + 1.53i)T + (-0.654 - 0.755i)T^{2} \) |
| 97 | \( 1 + (-0.857 + 0.989i)T + (-0.142 - 0.989i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.49154366927145877277450247798, −11.51513193698249743325494190188, −9.748377989077920958412778338852, −9.117518297748097578961038873262, −7.947310992096860865403685019615, −7.51511919653137768636864798925, −6.20838038062075400816381662075, −4.80806915706543327818837999032, −3.25297195246930043817121171869, −1.68272420117990294505165198837,
2.96486559833008781205357508615, 4.06621496211129415832596826603, 4.96332786324097638901111599888, 6.08064293609029139551270269205, 8.074580207792284169757914988639, 8.818363654283799960990648776082, 9.522607472550855290831919765184, 10.42578848606262017158353264009, 10.98211323671080688402176227543, 12.61192772817713725273934437109