Properties

Label 253.1.k.a
Level 253253
Weight 11
Character orbit 253.k
Analytic conductor 0.1260.126
Analytic rank 00
Dimension 1010
Projective image D11D_{11}
CM discriminant -11
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [253,1,Mod(32,253)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(253, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 10]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("253.32");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 253=1123 253 = 11 \cdot 23
Weight: k k == 1 1
Character orbit: [χ][\chi] == 253.k (of order 2222, degree 1010, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.1262634481960.126263448196
Analytic rank: 00
Dimension: 1010
Coefficient field: Q(ζ22)\Q(\zeta_{22})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x10x9+x8x7+x6x5+x4x3+x2x+1 x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D11D_{11}
Projective field: Galois closure of Q[x]/(x11)\mathbb{Q}[x]/(x^{11} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+(ζ2210+ζ228)q3ζ225q4+(ζ227ζ22)q5+(ζ229+ζ225)q9ζ223q11+(ζ224+ζ222)q12++(ζ2210+ζ228ζ22)q99+O(q100) q + (\zeta_{22}^{10} + \zeta_{22}^{8}) q^{3} - \zeta_{22}^{5} q^{4} + ( - \zeta_{22}^{7} - \zeta_{22}) q^{5} + ( - \zeta_{22}^{9} + \cdots - \zeta_{22}^{5}) q^{9} - \zeta_{22}^{3} q^{11} + (\zeta_{22}^{4} + \zeta_{22}^{2}) q^{12} + \cdots + (\zeta_{22}^{10} + \zeta_{22}^{8} - \zeta_{22}) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q2q3q42q53q9q112q12+7q15q162q20q233q254q272q31+9q333q362q37q446q452q47+3q99+O(q100) 10 q - 2 q^{3} - q^{4} - 2 q^{5} - 3 q^{9} - q^{11} - 2 q^{12} + 7 q^{15} - q^{16} - 2 q^{20} - q^{23} - 3 q^{25} - 4 q^{27} - 2 q^{31} + 9 q^{33} - 3 q^{36} - 2 q^{37} - q^{44} - 6 q^{45} - 2 q^{47}+ \cdots - 3 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/253Z)×\left(\mathbb{Z}/253\mathbb{Z}\right)^\times.

nn 2424 166166
χ(n)\chi(n) 1-1 ζ228\zeta_{22}^{8}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
32.1
−0.415415 0.909632i
−0.841254 + 0.540641i
−0.415415 + 0.909632i
0.142315 + 0.989821i
0.959493 + 0.281733i
0.142315 0.989821i
−0.841254 0.540641i
0.654861 + 0.755750i
0.959493 0.281733i
0.654861 0.755750i
0 −0.544078 0.627899i 0.841254 0.540641i 0.273100 + 1.89945i 0 0 0 0.0440780 0.306569i 0
54.1 0 0.698939 + 1.53046i −0.959493 0.281733i 0.186393 + 0.215109i 0 0 0 −1.19894 + 1.38365i 0
87.1 0 −0.544078 + 0.627899i 0.841254 + 0.540641i 0.273100 1.89945i 0 0 0 0.0440780 + 0.306569i 0
98.1 0 0.273100 + 0.0801894i −0.654861 0.755750i 0.698939 0.449181i 0 0 0 −0.773100 0.496841i 0
131.1 0 −1.61435 + 1.03748i −0.142315 0.989821i −0.544078 1.19136i 0 0 0 1.11435 2.44009i 0
142.1 0 0.273100 0.0801894i −0.654861 + 0.755750i 0.698939 + 0.449181i 0 0 0 −0.773100 + 0.496841i 0
164.1 0 0.698939 1.53046i −0.959493 + 0.281733i 0.186393 0.215109i 0 0 0 −1.19894 1.38365i 0
186.1 0 0.186393 + 1.29639i 0.415415 + 0.909632i −1.61435 0.474017i 0 0 0 −0.686393 + 0.201543i 0
197.1 0 −1.61435 1.03748i −0.142315 + 0.989821i −0.544078 + 1.19136i 0 0 0 1.11435 + 2.44009i 0
219.1 0 0.186393 1.29639i 0.415415 0.909632i −1.61435 + 0.474017i 0 0 0 −0.686393 0.201543i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 32.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by Q(11)\Q(\sqrt{-11})
23.c even 11 1 inner
253.k odd 22 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 253.1.k.a 10
3.b odd 2 1 2277.1.be.a 10
11.b odd 2 1 CM 253.1.k.a 10
11.c even 5 4 2783.1.dh.a 40
11.d odd 10 4 2783.1.dh.a 40
23.c even 11 1 inner 253.1.k.a 10
33.d even 2 1 2277.1.be.a 10
69.h odd 22 1 2277.1.be.a 10
253.k odd 22 1 inner 253.1.k.a 10
253.m even 55 4 2783.1.dh.a 40
253.o odd 110 4 2783.1.dh.a 40
759.t even 22 1 2277.1.be.a 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
253.1.k.a 10 1.a even 1 1 trivial
253.1.k.a 10 11.b odd 2 1 CM
253.1.k.a 10 23.c even 11 1 inner
253.1.k.a 10 253.k odd 22 1 inner
2277.1.be.a 10 3.b odd 2 1
2277.1.be.a 10 33.d even 2 1
2277.1.be.a 10 69.h odd 22 1
2277.1.be.a 10 759.t even 22 1
2783.1.dh.a 40 11.c even 5 4
2783.1.dh.a 40 11.d odd 10 4
2783.1.dh.a 40 253.m even 55 4
2783.1.dh.a 40 253.o odd 110 4

Hecke kernels

This newform subspace is the entire newspace S1new(253,[χ])S_{1}^{\mathrm{new}}(253, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T10 T^{10} Copy content Toggle raw display
33 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
55 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
77 T10 T^{10} Copy content Toggle raw display
1111 T10+T9++1 T^{10} + T^{9} + \cdots + 1 Copy content Toggle raw display
1313 T10 T^{10} Copy content Toggle raw display
1717 T10 T^{10} Copy content Toggle raw display
1919 T10 T^{10} Copy content Toggle raw display
2323 T10+T9++1 T^{10} + T^{9} + \cdots + 1 Copy content Toggle raw display
2929 T10 T^{10} Copy content Toggle raw display
3131 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
3737 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
4141 T10 T^{10} Copy content Toggle raw display
4343 T10 T^{10} Copy content Toggle raw display
4747 (T5+T44T3++1)2 (T^{5} + T^{4} - 4 T^{3} + \cdots + 1)^{2} Copy content Toggle raw display
5353 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
5959 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
6161 T10 T^{10} Copy content Toggle raw display
6767 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
7171 T109T9++1 T^{10} - 9 T^{9} + \cdots + 1 Copy content Toggle raw display
7373 T10 T^{10} Copy content Toggle raw display
7979 T10 T^{10} Copy content Toggle raw display
8383 T10 T^{10} Copy content Toggle raw display
8989 T10+2T9++1 T^{10} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
9797 T109T9++1 T^{10} - 9 T^{9} + \cdots + 1 Copy content Toggle raw display
show more
show less